Rs 485 что это такое?

RS-485

RS-485
Стандарт EIA RS-485
Физическая среда Витая пара
Сетевая топология Точка-точка, Multi-dropped, Multi-point
Максимальное количество устройств 32 — 256 устройств (32 нагруженных)
Максимальное расстояние 1200 метров
Режим передачи Дифференциальный (балансный)
Максимальная скорость передачи 100 кбит/с — 10 Мбит/с
Напряжение -7 В до +12 В
(1) Положительное напряжение (B-A > +200 мВ)
(0) Отрицательное напряжение (B-A Recommended Standard 485 ), EIA-485 (англ. Electronic Industries Alliance-485 ) — стандарт физического уровня для асинхронного интерфейса. Регламентирует электрические параметры полудуплексной многоточечной дифференциальной линии связи типа «общая шина».

Стандарт приобрел большую популярность и стал основой для создания целого семейства промышленных сетей широко используемых в промышленной автоматизации.

Стандарт RS-485 совместно разработан двумя ассоциациями: Ассоциацией электронной промышленности (EIA — Electronics Industries Association) и Ассоциацией промышленности средств связи (TIA — Telecommunications Industry Association). Ранее EIA маркировала все свои стандарты префиксом «RS» (англ. Recommended Standard — Рекомендованный стандарт). Многие инженеры продолжают использовать это обозначение, однако EIA/TIA официально заменил «RS» на «EIA/TIA» с целью облегчить идентификацию происхождения своих стандартов.

Содержание

Технические характеристики интерфейса RS-485

В стандарте RS-485 для передачи и приёма данных используется одна витая пара проводов, иногда сопровождаемая экранирующей оплеткой или общим проводом. Передача данных осуществляется с помощью дифференциальных сигналов. Разница напряжений между проводниками одной полярности означает логическую единицу, разница другой полярности — ноль.

  1. Стандарт RS-485 оговаривает только электрические и временные характеристики интерфейса.
  2. Стандарт RS-485 не оговаривает:
    • параметры качества сигнала (допустимый уровень искажений, отражения в длинных линиях)
    • типы соединителей и кабелей,
    • гальваническую развязку линии связи,
    • протокол обмена.

Электрические и временные характеристики интерфейса RS-485

  • До 32 приёмопередатчиков в одном сегменте сети.
  • Максимальная длина одного сегмента сети: 1200 метров.
  • Только один передатчик активный.
  • Максимальное количество узлов в сети — 256 с учётом магистральных усилителей.
  • Характеристика скорость обмена/длина линии связи (зависимость экспоненциальная):
    • 62,5 кбит/с 1200 м (одна витая пара)
    • 375 кбит/с 300 м (одна витая пара)
    • 500 кбит/с
    • 1000 кбит/с
    • 2400 кбит/с 100 м (две витых пары)
    • 10000 кбит/с 10 м

Примечание: Скорости обмена 62,5 кбит/с, 375 кбит/с, 2400 кбит/с оговорены стандартом RS-485. На скоростях обмена свыше 500 кбит/с рекомендуется использовать экранированные витые пары.

  • Тип приёмопередатчиков — дифференциальный, потенциальный. Изменение входных и выходных напряжений на линиях A и B: Ua (Ub) от −7В до +12В (+7В).
  • Требования, предъявляемые к выходному каскаду: — выходной каскад представляет собой источник напряжения с малым выходным сопротивлением, |Uвых|=1,5:5,0В (не 6,0В);
    • состояние логической «1»: Ua больше Ub (гистерезис 200мВ) — MARK, OFF;
    • состояние логического «0»: Ua меньше Ub (гистерезис 200мВ) — SPACE, ON (производители микросхем — драйверов, часто выбирают намного меньшие значения, гистерезис от 10 мВ [1][2] );
    • выходной каскад должен выдерживать режим короткого замыкания, иметь максимальный выходной ток 250мА, скорость нарастания выходного сигнала 1,2В/мкс и схему ограничения выходной мощности.
  • Требования, предъявляемые к входному каскаду: — входной каскад представляет собой дифференциальный вход с высоким входным сопротивлением и пороговой характеристикой от −200мВ до +200мВ;
    • допустимый диапазон входных напряжений Uag (Ubg) относительно земли (GND) от −7В до +12В;
    • входной сигнал представлен дифференциальным напряжением (Ui+0,2В) и более;
    • уровни состояния приёмника входного каскада — см. состояния передатчика выходного каскада.

Сигналы

Передача данных идёт по двум линиям, A и B.

  • Логическая единица: (B — A) > +200мВ
  • Логический ноль: (B — A) Согласование

При большой длине линии связи возникают эффекты длинных линий. Причина этому — распределенные индуктивные и емкостные свойства кабеля. Как следствие, сигнал, переданный в линию одним из узлов, начинает искажаться по мере распространения в линии, возникают сложные резонансные явления. Поскольку на практике кабель на всей длине имеет одинаковую конструкцию и, следовательно, одинаковые распределенные параметры погонной емкости и индуктивности, то это свойство кабеля характеризуют специальным параметром — волновым сопротивлением. Не вдаваясь в теоретические подробности, можно сказать, что в кабеле, на приемном конце которого подключен резистор с сопротивлением, равным волновому сопротивлению кабеля, резонансные явления значительно ослабляются. Называется такой резистор терминатором. Для сетей RS485 они ставятся на каждой оконечности длинной линии (поскольку обе стороны могут быть приемными). Волновое сопротивление наиболее распространенных витых пар CAT5 составляет 100 Ом [3] . Другие витые пары могут иметь волновое сопротивление 150 Ом и выше. Плоские «ленточные» кабели до 300 Ом. [4] [5]

На практике номинал этого резистора может выбираться и бóльшего номинала чем волновое сопротивление кабеля поскольку омическое сопротивление того же кабеля может оказаться настолько велико, что амплитуда сигнала на приемной стороне окажется слишком мала для устойчивого приема. В этом случае ищут компромисс между резонансными и амплитудными искажениями сигнала, уменьшая скорость интерфейса и увеличивая номинал терминатора [6] [7] [8] . На скоростях 9600 бит/с и ниже, резонансные явления в масштабах способных ухудшить качество связи практически не проявляются, и вопроса согласовании линии часто вообще не возникает. Так на скорости 9600 бит/с каждый бит информации представлен имульсом в 104 мкс (1 с / 9600 бит/с), электрический сигнал в витой паре, за это время, пройдет около 31 километра. При длине кабеля менее 1 километра, частично отраженный сигнал, от несогласованных концов кабеля, может несколько исказить фронт сигнала (первые 7 мкс импульса), но не его основную форму в целом.

Еще один источник искажения формы сигналов, при передаче через витую пару, разная скорость распространения высокочастотного и низкочастотного сигнала (высокочастотная составляющая распространяется по витой паре несколько быстрее), что приводит к искажению формы сигнала при высоких скоростях передачи [9] .

Помехи в линии связи зависят не только от длины, терминаторов и качества самой витой пары. Важно чтобы линия связи последовательно обходила все приемопередатчики (топология общей шины). Витая пара не должна иметь длинных отводов — отрезков кабеля для соединения с очередным узлом.

Подключение

Контакты RS-485

Разъем состоит из двух или трех контактов:

  • B или ‘+’ (TxD+/RxD+), не инвертированный [10]
  • A или ‘-‘ (TxD-/RxD-), инвертированный
  • Опциональный общий провод. Соединение общих шин устройств не обязательно, но улучшает устойчивость работы интерфейса.

Национальная библиотека им. Н. Э. Баумана
Bauman National Library

Персональные инструменты

  • Главная
  • Рубрикация
  • Указатель А — Я
  • Порталы
  • Произвольно
  • Журнал
  • Редакторам
    • Ссылки сюда
    • Связанные правки
    • Загрузить файл
    • Спецстраницы
    • Версия для печати
    • Постоянная ссылка
    • Сведения о странице
    • Цитировать страницу
    • Читать
    • Просмотр
    • История

RS-485

История

Стандарт RS-485 был совместно разработан двумя ассоциациями производителей: Ассоциацией электронной промышленности (EIA — Electronics Industries Association) и Ассоциацией промышленности средств связи (TIA — Telecommunications Industry Associastion). EIA некогда маркировала все свои стандарты префиксом «RS» (Рекомендованный стандарт). Многие инженеры продолжают использовать это обозначение, однако EIA/TIA официально заменил «RS» на «EIA/TIA» с целью облегчить идентификацию происхождения своих стандартов. На сегодняшний день, различные расширения стандарта RS-485 охватывают широкое разнообразие приложений.

Описание стандарта

Технические характеристики

  • Допустимое число приёмопередатчиков (драйверов) 32
  • Максимальная длина линии связи 1200 м (4000ft)
  • Максимальная скорость передачи 10 Мбит/с
  • Минимальный выходной сигнал драйвера ±1,5 В
  • Максимальный выходной сигнал драйвера ±5 В
  • Максимальный ток короткого замыкания драйвера 250 мА
  • Выходное сопротивление драйвера 54 Ом
  • Входное сопротивление драйвера 12 кОм
  • Допустимое суммарное входное сопротивление 375 Ом
  • Диапазон нечувствительности к сигналу ±200 мВ
  • Уровень логической единицы (Uab) >+200 мВ
  • Уровень логического нуля (Uab) Свойства интерфейса стандарта RS-485
  • Двунаправленная полудуплексная передача данных. Поток последовательных данных передаётся одновременно только в одну сторону, передача данных в другую сторону требует переключения приёмопередатчика. Приёмопередатчики принято называть «драйверами»(driver), это устройство или электрическая цепь, которая формирует физический сигнал на стороне передатчика.
  • Симметричный канал связи. Для приёма/передачи данных используются два равнозначных сигнальных провода. Провода означаются латинскими буквами «А» и «В». По этим двум проводам идет последовательный обмен данными в обоих направлениях (поочередно). При использовании витой пары симметричный канал существенно повышает устойчивость сигнала к синфазной помехе и хорошо подавляет электромагнитные излучения создаваемые полезным сигналом.
  • Дифференциальный (балансный способ передачи данных). При этом способе передачи данных на выходе приёмопередатчика изменяется разность потенциалов, при передаче «1» разность потенциалов между AB положительная при передаче «0» разность потенциалов между AB отрицательная. То есть, ток между контактами А и В, при передачи «0» и «1», течёт (балансирует) в противоположных направлениях.
  • Многоточечность. Допускает множественное подключение приёмников и приёмопередатчиков к одной линии связи. При этом допускается подключение к линии только одного передатчика в данный момент времени, и множество приёмников, остальные передатчики должны ожидать освобождения линии связи для передачи данных.
  • Низкоимпендансный выход передатчика. Буферный усилитель передатчика имеет низкоомный выход, что позволяет передавать сигнал ко многим приёмникам. Стандартная нагрузочная способность передатчика равна 32-м приёмникам на один передатчик. Кроме этого, токовый сигнал используется для работы «витой пары» (чем больше рабочий ток «витой пары», тем сильнее она подавляется синфазные помехи на линии связи).
  • Зона нечувствительности. Если дифференциальный уровень сигнала между контактами АВ не превышает ±200мВ, то считается, что сигнал в линии отсутствует. Это увеличивает помехоустойчивость передачи данных.

Описание обмена данными

Каждый приёмопередатчик (драйвер) RS-485 может находиться в одном из двух состояний: передача данных или приём данных. Переключение драйвера RS-485 происходит с помощью специального сигнала. Например, на рис.3 показан обмен данными с использованием преобразователя АС3 фирмы Овен. Режим преобразователя переключается сигналом RTS. Если RTS=1 (True) АС3 передает данные, которые поступают к нему от СОМ порта в сеть RS-485. При этом все остальные драйверы должны находиться в режиме приёма (RTS=0). По сути дела RS-485 является двунаправленным буферным мультиплексированным усилителем для сигналов RS-232. Ситуация когда в одно время будет работать более одного драйвера RS-485 в режиме передатчика приводит к потере данных. Эта ситуация называется «коллизией». Чтобы коллизии не возникали в каналах обмена данными необходимо использовать более высокие протоколы (OSI). Такие как MODBUS, DCON, DH485 и др. Либо программы, которые напрямую работают с RS-232 и решают проблемы коллизий. Обычно эти протоколы называют 485-тыми протоколами. Хотя на самом деле, аппаратной основой всех этих протоколов служит, конечно, RS-232. Он обеспечивает аппаратную обработку всего потока информации. Программную обработку потока данных и решение проблем с коллизиями занимаются протоколы высшего уровня (Modbus и др.) и ПО.

Реализация приемопередатчиков(драйверов) RS-485

Многие фирмы изготовляют приемопередатчики RS485. Называют их обычно конверторы RS232 — RS485 или преобразователи RS232-RS485. Для реализации этих приборов выпускается специальные микросхемы. Роль этих микросхем сводится к преобразованию уровней сигналов RS232C к уровню сигналов RS485 (TTL/CMOS) и обратно, а также обеспечение работы полудуплексного режима.

По способу переключения в режим передачи различают приборы:

  1. Переключающиеся с помощью отдельного сигнала. Для перехода в режим передачи необходимо выставить активный сигнал на отдельном входе. Обычно это сигнал RST (СОМ порта). Эти приемопередатчики сейчас редко встречаются. Но, тем не менее, они иногда не заменимы. Допустим нужно прослушивать обмен данными между контроллерами промышленного оборудования. При этом, ваш приёмопередатчик не должен переходить в режим передачи, чтобы не создать коллизию в данной сети. Использование приёмопередатчика с автоматическим переключением здесь не допустимо.
  2. С автоматическим переключением и без проверки состояния линии. Наиболее распространённые конверторы, которые переключаются автоматически при появлении на их входе информационного сигнала. При этом они не контролируют занятость линии связи. Эти конверторы требуют осторожного применения из-за высокой вероятности возникновения коллизий.
  3. С автоматическим переключением и с проверкой состояния линии. Наиболее продвинутые конверторы, которые могут передавать данные в сеть только при условии, что сеть не занята другими приёмопередатчиками и на входе имеется информационный сигнал.

Описание работы RS-485

Так как стандарт, RS-485 описывает только физический уровень процедуры обмена данными, то все проблемы обмена, синхронизации и квитирования, возлагаются на более высокий протокол обмена. Наиболее часто, это стандарт RS-232 или другие верхние протоколы (ModBus , DCON и т.п.). Сам RS-485 выполняет только следующие действия:

  1. Преобразует входящую последовательность «1» и «0» в дифференциальный сигнал.
  2. Передает дифференциальный сигнал в симметричную линию связи.
  3. Подключает или отключает передатчик драйвера по сигналу высшего протокола.
  4. Принимает дифференциальный сигнал с линии связи.

Если подключить осциллограф к контактам А-В (RS-485) и контактам GND-TDx(RS-232), то вы не увидите разницы в форме сигналов передаваемых в линиях связи. На самом деле, форма сигнала RS-485 полностью повторяет форму сигнала RS-232, за исключением инверсии ( в RS-232 логическая единица передается напряжением -12 В, а в RS-485 +5 В).

Рис.2 Форма сигналов RS-232 и RS-485 при передаче двух символов «0» и «0».

Достоинства и недостатки

Достоинства

  1. Хорошая помехоустойчивость.
  2. Большая дальность связи.
  3. Однополярное питание +5 В.
  4. Простая реализация драйверов.
  5. Возможность широковещательной передачи.
  6. Многоточечность соединения.

Недостатки

  1. Большое потребление энергии.
  2. Отсутствие сервисных сигналов.
  3. Возможность возникновения коллизий.

Стандарты основанные на стандарте RS-485

  • ISO/IEC 8482 (1993г. действующий)

Издатель: ISO, IEC Название: Information technology — Telecommunications and information exchange between Systems — Twisted pair multipoint interconnections. Старые редакции: ISO 8284 (1987г. не действующий)

  • ITU-T v.11 (1996г. действующий)

Издатель: INTERNATIONAL TELECOMMUNICATION UNION Название: Electrical characteristics for balanced double-current interchange circuits opertiong at data signalling rates up to 10 Mbit/s. Старые редакции: ITU-T v.11 (1993г. не действующий) CCITT v.11 (1988г. не действующий)

  • ANSI/TIA-485-A (1998г. действующий)

Издатель: American National Standards Institute, ANSI Название: Electrical Characteristics of Generators and Receivers for Use in Balanced Digital Multipoint Systems.

Интерфейс RS 485, принцип действия, организация работы

В современной технике все большее значение приобретает обмен информацией между различными устройствами. А для этого требуется передавать данные как на небольшие расстояния, так и на значительные, порядка километров. Один из таких видов передачи данных – связь между устройствами по интерфейсу RS-485.

  1. Где необходимо передавать данные по RS 485.
  2. Интерфейс RS-232 — младший брат RS 485.
  3. Организация интерфейса RS-485.
  4. Порядок обмена данными между устройствами по RS-485.
  5. Требования к кабельным соединениям.

Где необходимо передавать данные по RS 485.

Один из самых распространенных примеров применения устройств для обмена данными – дистанционные системы учета электроэнергии. Электросчетчики, объединяемые в единую сеть, рассредоточены по шкафам, ячейкам распределительных устройств и даже подстанциях, находящимся на значительном удалении друг от друга. В этом случае интерфейс служит для отправки данных от одного или нескольких устройств учета.

Система «один счетчик – один модем» активно внедряется для передачи данных в службы энергосбытовых компаний от узлов учета частных домов, небольших предприятий.

Другой пример: получение данных от микропроцессорных терминалов релейной защиты в режиме реального времени, а также централизованный доступ к ним с целью внесения изменений. Для чего терминалы обвязываются через интерфейс связи аналогичным образом, а данные от него поступают в компьютер, установленный у диспетчера. В случае срабатывания защиты оперативный персонал имеет возможность сразу же получить информацию о месте действия и характере повреждения силовых цепей.

Компьютер же обменивается данными с контроллерами – устройствами, преобразующими команды от датчиков на язык, понятный машине, и обратное преобразование: от языка машины в команды управления. Связь с контроллером, а также – между разными контроллерами, осуществляется через интерфейсы связи.

Интерфейс RS-232 — младший брат RS 485.

Нельзя хотя бы коротко не упомянуть об интерфейсе RS-232, который еще называют последовательным. Разъем под соответствующий порт имеют некоторые ноутбуки, а некоторые цифровые устройства (те же терминалы релейной защиты) снабжаются выходами для связи с помощью RS-232.

Для того, чтобы обмениваться информацией, нужно уметь ее передавать и принимать. У RS-232 для этого есть передатчик и приемник сигналов. Они имеются в каждом устройстве. Причем выход передатчика одного устройства (TX) соединяется со входом приемника другого устройства (RX). И, соответственно, по другому проводнику аналогичным образом сигнал движется в обратную сторону.

При этом обеспечивается полудуплексный режим связи, то есть, приемник и передатчик могут работать одновременно. Данные по кабелю RS-232 могут в одно и то же время перемещаться и в одну, и в другую сторону.

Недостаток этого интерфейса – низкая помехозащищенность. Это происходит из-за того, что сигнал в соединительный кабель и на прием, и на передачу формируется относительно общего провода – земли. Любая наводка, существующая даже в экранированном кабеле, может привести к сбою связи, потере отдельных битов информации. А это недопустимо при управлении сложными и недешевыми механизмами, где любая ошибка – авария, а потеря связи – длительный простой.

Поэтому RS-232 в основном применяется для небольших временных подключений ноутбука к цифровому устройству, например, для установки начальной конфигурации или исправления ошибок.

Организация интерфейса RS-485.

Главное отличие RS-458 от RS-232 – все приемники и передатчики работают на одну пару проводов, являющуюся линией связи. Провод земли при этом не используется, а сигнал в линии формируется дифференциальным методом. Он передается одновременно по двум проводам («А» и «В») в инверсном виде.

Если на выходе передатчика – логический «0», то на проводник «А» выдается нулевой потенциал. На проводнике «В» формируется сигнал «не 0», то есть – «1». Если передатчик транслирует «1», получается все наоборот.

Что такое RS-485 и зачем используется интерфейс

Передача информации между устройствами осуществляется с помощью специального протокола или интерфейса. Иногда требуется передавать данные на расстояние до нескольких километров. Одним из самых популярных интерфейсов для передачи информации, является RS-485.

Что такое RS-485?

Стандарт RS-485 подразумевает отправку данных одного или нескольких устройств на главный терминал. Хороши примером работы такой системы будет получение информации от микропроцессорных терминалов. Они подключены между собой и к главному диспетчеру.

Все данные передаются в режиме реального времени. В случае поломки или срабатывания защиты, на главный компьютер поступает соответствующие сообщение. Тогда, оператор может увидеть на каком именно терминале произошла неполадка и быстро ее устранить.

Кроме того, на главном компьютере отображаются характеристики всех терминалов. К ним относится температура, производительность. Также можно увидеть, какие именно девайсы включены или отключены.

Этот интерфейс связи необходим для обработки команд. Так, оператор совершает определенные действия, которые стандарт преобразовывает в машинный язык. После этого все команды передаются на указанный терминал и происходит обратное преобразование.

Интерфейс RS-485 допускает до 32 приемопередатчиков на один сегмент сети. Длина может достигать 1200 метров. Максимальное количество узлов составляет 256. Для лучшей передачи данных нужно использовать витую пару.

Принцип связи между устройствами

Компоненты сети соединяются двумя проводами, используя балансный (дифференциальный) метод подключения. При таком способе сигнал передается по двум проводам. Если один из проводников обозначить буквой «A», а второй «B», то информация будет передаваться по A в исходном виде, а по B —в инвертированном. Если на проводе A максимальное значение, то на B — минимальное.

Поэтому всегда существует разность значений напряжения между проводами A и B. Итоговая информация считывается в точке приема по этому показателю.

Благодаря дифференциальному способу передачи, достигается высокая помехоустойчивость к электромагнитным помехам. Так как витая пора состоит из двух проводников сигнала, расположенных близко к друг другу, то любая наводка действует практически одинаково на них. Если произошло изменение амплитуды на проводе A, то настолько же изменился инвертированный сигнал на B.

Но значение имеет не величина напряжения относительно земли на одном из проводов, а разность потенциалов между ними, которая не изменится, и полезная информация не исказится.

Напряжение относительно земли может быть от -7 В до +12 В. Значения от 200 мВ до 12В приемники на линии воспринимают как логическую 1, от -7 В до -200 мВ — как логический 0. Балансное напряжение на выходе должно быть не менее 1,5 В. Приемник реагирует на величины от 200 мВ.

В рассматриваемом стандарте большая разность потенциалов позволяет передавать управляющие сигналы на длинные расстояния. В RS-482 максимальная длина линии достигает 1200 метров при скорости обмена данными около 100 кбит/с.

Описание интерфейса

Стандарт имеет несколько основных характеристик. Обмен данными происходит в полудуплексном режиме. При этом используется одна двухпроводная линия связи. Интерфейс применяется в промышленности во время создания автоматизированной системы управления технологическими процессами (АСУ ТП).

Количество подключаемых устройств

Значение данной характеристики вычисляется из расчета количества оборудования на одну линию связи. Здесь число может варьироваться в зависимости от сопротивления приемника. В одной линии связи может присутствовать до 32 устройств. Приемник может иметь входное сопротивление 1/2, 1/4, 1/8. От этого числа зависит и конечное количество устройств. Так, его можно увеличить в 2, 4 или 8 раз.

Расстояние и скорость

Максимальное расстояние подключаемых устройств зависит от скорости передачи информации. Это необходимо учитывать перед подключением. Так, при скорости 10 Мб/с расстояние будет составлять 120 метров. При скорости 100 Мб/с можно размещать оборудование на расстоянии до 1200 метров.

Протоколы передачи и разъемы

Для передачи информации используются стандартные фреймы:

  • стартовый бит;
  • стоповый бит;
  • биты данных.

Принцип действия протоколов обмена системы состоит в «ведущий-ведомый». Главное устройство инициирует и контролирует передачу данных между остальными.

Стандартом не предусмотрено обозначение типа соединителей. Это же относится и к распайке. Так, можно встретить различные соединители, например, DB9 или клеммные.

Порядок обмена данными по RS-485

Несколько устройств подключаются между собой с помощью цепочки кабелей. Для обмена информации необходим специальный протокол. Чаще всего используется Modbas.

Например, есть несколько устройств, которые собирают информацию. Раз в месяц они должны передать все данные в центральный компьютер. Для этого главное устройство оформляет запрос. Каждый терминал имеет свой порядковый номер. Эти цифры будут идти первыми в запросе. Если команда не совпадает с номером терминала, то он будет его игнорировать.

Следующие цифры в запросе отвечают за действие, которое должно произвести устройство. Например, передача информации. Таким образом, команда дойдет до нужного терминала и будет выполнена нужная операция.

В некоторых случаях запрос не доходит до устройства. Происходит сбой на линии или помехи. Для исключения помех используется контрольная сумма. Это некий набор цифр, который присутствует в запросе. Также, он есть и на самом оборудовании. Таким образом можно проверить, достигла ли команда конечной цели.

Требования к кабельным соединениям

При подключении интерфейса RS-485 нужно соблюдать некоторые требования. Требуется две пары кабелей «витая пара». Однако, для обмена информации достаточно и одной. Вторая пара используется в качестве резерва.

Чтобы уменьшить помехи, необходимо экранировать кабели. Экраны следует соединить по всей длине линии. Заземлять провод нужно только в одном месте. В противном случае возникнут наводки, из-за разницы потенциала в двух точках. Они пройдут по всей длине экрана.

С самим подключением кабелей проблем возникнуть не должно. Однако, программная часть соединения устройств гораздо сложнее. Здесь лучше доверить работу профессионалам.

Распиновка RS-485

Наиболее часто для соединения устройств в стандарте RS-485 используется разъем DB-9, мама (F) или папа (M).

Схема контактов выглядит так:

Разъем DB-25 также используется в соединениях RS-485:

Соответствие между DB-9 и DB-25:

Маркировка обозначает следующее:

  • GND — земля;
  • DCD — обнаружение устройства готового к передаче;
  • DSR — вход, который информирует, что все предварительные настройки выполнены, приемопередатчик готов к работе;
  • DTR — выход, посылающий сигнал DSR;
  • CTS — вход, который сообщает передатчику, что приемник готов к получать данные по TXD;
  • RTS — выход трансмиттера, отправляющего CTS ресиверу;
  • RD или RXD — асинхронный вход, принимающий информацию;
  • TD или TXD — асинхронный выход, отправляющий данные;
  • RI — вход, сообщающий ресиверу о запросе от передатчика.

Для стандарта используются 3 контакта в разъеме:

Схемы подключений

Интерфейс RS-485 может работать в режиме полного дуплекса или полудуплекса. В первом случае устройство может одновременно передавать и получать данные. Полудуплекс подразумевает только одно из действий.

Режим полного дуплекса предполагает наличие 4 контактов. Он имеет следующую схему подключения:

Схема подключения полудуплексного RS 485 с 2 контактами:

Правильная разводка сетей

На первом рисунке находится один трансмиттер и один ресивер. Установлены терминаторы.

На следующем рисунке обозначены 1 передатчик и несколько приемников. Ответвления к ресиверам короткие.

Сложная схема с несколькими приемопередатчиками. Также нужно подключать их к сети короткими проводами.

Неправильные подключения

На рисунке изображена сеть без согласующего резистора. Такое подключение искажает сигнал.

На следующем изображении есть терминаторы, но один расположен неверно, не в конце сети.

Далее показана цепь с длинными ответвлениями, что тоже расстраивает всю систему.

RS-232 и RS-485

Интерфейс RS-232 состоит из передатчика и приемника сигнала. Данный стандарт применяются в небольших сетях. Его главным недостатком является плохая помехоустойчивость. Все дело в том, что данные формируются относительно земли. Это приводит к частым сбоям и потере информации.

Часто RS-232 используется для временного подключения. С его помощью можно настроить начальную конфигурацию или исправить возникшие ошибки.

Данный интерфейс имеет полудуплексный режим связи. Вход приемника соединяется с выходом передатчика. Прием и передача может осуществляться в одно и то же время.

В целом, если обобщить, отличаются 2 интерфейса по следующим параметрам:

  1. Дистанция. У RS-232 она составляет 15 м, а у конкурента — 1200 м.
  2. Количество подключаемых устройств. 1 против 256 у RS-485.
  3. RS-232 подвержен сильным искажениям при электромагнитных помехах, так как не использует дифференциальную передачу сигнала.
  4. RS-485 распространен в промышленности.

Rs 485 что это такое?

Очень разные реализации

Разберем подробнее каждый из пунктов. Во-первых, поясню, что такое дифференциальный сигнал. Это значит, что измеряется напряжение между двумя проводами. Имеет значение только напряжение между проводами, а каков потенциал этих проводов относительно Земли – не очень важно.

На практике это означает, что передатчик подает то на один провод 0В а на другой 5В, то наоборот. А приемник анализирует, на каком проводе напряжение выше и понимает, «0» или «1» ему передали.

А теперь тонкость номер 1. Изначальный стандарт требовал, чтобы приемник заведомо воспринимал разницу напряжений, превышающую 200 мВ. Если один провод на 200 мВ выше другого – это «1». Если ниже – значит «0». А что будет, если разницы напряжений вообще нет ? Например, если передатчик отключен ? Приемник имеет право воспринимать малейшие шумы то как «1», то как «0». Конечно, шум – это просто бессмысленный шум, но, говорят, даже обезьяна за пишущей машинкой за миллион лет может случайно написать «Войну и Мир». А вам надо случайно получить команду включения пожаротушения ? Что же делать ? Есть несколько решений проблемы, применяемые разными производителями микросхем. Первое – если напряжение между проводами заметное время находится между -200 и +200 мВ, то микросхема приемника выдает отдельный сигнал «линия свободна». Некоторые системы используют этот сигнал для того, чтобы устройства понимали, когда они могут начать передавать. Второе решение – микросхема приемника воспринимает все, что выше -200 мВ как заведомую «1». Поэтому между пакетами, когда никто на линии ничего не передает, наш прибор будет заведомо видеть «1» и не получит никаких нежелательных команд от источников помех. Если не применять специальные микросхемы, то аналогичный эффект достигается, если подключить (см. пункт 2 таблицы) пару резисторов к питанию, чтобы в случае отключенных передатчиков на линии заведомо было +250 мВ. Кстати, на картинке выше именно такой вариант – в паузах между пакетами явно присутствует небольшое напряжение. Вот как это обычно реализуют:

Но самый распространенный вариант борьбы с шумами – добавить гистерезис на 100-150 мВ. Тогда получается, что если последний раз напряжение было выше +200, и после этого болтается между -200 и +200, микросхема считает, что на линии все еще передается «1». А если напряжение вылезло ниже -200, то теперь микросхема будет выдавать «1» пока напряжение не перейдет вверх верхнюю границу и не станет выше +200. Картинка ниже иллюстрирует работу приемника с гистерезисом. График U – это входное напряжение, график А – это что бы выдал на выход приемник без гистерезиса, график В – с гистерезисом (шумы исчезли, а переключения при приеме сигнала немного сдвинулись).

Все описанные решения хороши, но никакое из них не идеально. Особенно чревато, если в одной системе встретятся устройства, которые ожидают реального нуля (между – и + 200 мВ), чтобы начать передачу и устройства, которые в паузах легонько растягивают напряжение до -200 мВ. В таком случае первое устройство никогда не дождется возможности что-то передать.

Перейдем ко второму пункту. Согласование кабеля. В теории, на концах длинной линии передачи должны быть подключены резисторы, равные ее так называемому «волновому сопротивлению». Тогда распространяющийся по линии сигнал воспринимает этот резистор как бесконечное продолжение линии связи, и уходит в него без отражений. В противном же случае получается то, что изображено на рисунке ниже.

Вверху – исходный передаваемый сигнал, следующие две пары осциллограмм – напряжения на передатчике и приемнике, последний (нижний) луч – восстановленный приемником информационный сигнал. Правда, довольно корявая форма сигнала ? Приемник, конечно, восстановил довольно точно, но мы понимаем, что помехоустойчивость во время этих переходных процессов, отражений сигнала от концов – наверняка не так высока, как нам бы хотелось.

Конечно, по стандарту положено согласовать. Конечно, на практике мы прокладываем линии связи кабелем, про который никто не скажет, какое у него волновое сопротивление. И насколько оно однородно по длине кабеля (а на скачках параметров кабеля, или на скрутках, тоже будут отражения, как бы вы ни согласовали концы). Так вот, в реальности отсутствие согласования почти никогда никому не мешает. Обратите внимание на шкалу времени на картинке. Отражения (в данном случае на 50-метровом участке кабеля) занимают меньше 200 наносекунд. Несколько отражений от обоих концов кабеля – максимум одна микросекунда – и сигнал уже успокоился. Если кабель длинный (например 1 километр), отражения распространяются дольше – скажем, 5 микросекунд, но зато отражение будет только одно – отраженный сигнал настолько затухает на длинном кабеле, что второго и третьего отражения уже точно не будет. Итак, все отражения и искажения длятся всего несколько микросекунд. Согласно тому же исходному тексту стандарта RS485 (да и согласно требованиям микросхем последовательных передатчиков) установление сигнала должно занимать не более 1/10 длительности бита данных. Умножаем 5 микросекунд на 10 – получаем, что при длительности бита 50 микросекунд (то есть при скорости передачи 19200 бит/сек) все эти отражения на километровой линии можно игнорировать. Вот так! Конечно, лучше не игнорировать, лучше, чтобы отражений не было, но на типичной скорости передачи 9600 на длине кабеля меньше километра проблемы, вызванные плохим согласованием, мягко говоря, маловероятны. Если у вас не работает канал связи RS485 – скорее всего это вызвано совсем другими причинами.

Более того. Выходное сопротивление передатчика согласно стандарту должно быть 54 Ом. Согласующие резисторы (по 120 Ом с каждой стороны) являются нагрузкой 60 Ом. Таким образом, сигнал изначально делится пополам. Передатчик мог бы передать разностное напряжение 5 В, а на линии получается всего лишь 2 .. 2,5 В. Сигнал меньше, помехоустойчивость хуже. И запас на затухание меньше. Например, довольно толстый кабель сечением 0.75 мм2 имеет сопротивление провода около 3 Ом на 100 метров. Два провода на длине 1 км добавят еще 60 Ом. То есть сигнал на конце линии окажется еще в два раза меньше. А если вы взяли замечательную витую пару 6-й категории (сечением 0.2 мм2, т.е. в 4 раза тоньше рассмотренного ранее кабеля) сигнал будет еще в 4 раза меньше. Это сколько ? 2 вольта, да пополам, да еще на 4, итого – 250 милливольт. Практически на границе чувствительности приемника. Работать точно не будет уже на 1 км, хотя стандарт нам вроде бы обещает 1200 метров. Так что не гонитесь за категорией витой пары, возьмите лучше кабель потолще. Кстати, если проблема с большим затуханием в тонком кабеле – снимите согласующие резисторы. Все равно никакие отражения никуда не дойдут – затухнут, да и, как мы уже показали, на скорости 9600 отражения никого и не волнуют. Зато сигнал подрастет в несколько раз.

Вот теперь вы знаете, откуда берутся некоторые ограничения, описанные в стандарте. Так, стандарт описывал максимальную скорость 10 МБод, однако это было связано с тем, что отдельно требовалось от передатчиков не искажать фронты импульсов более чем на 20 нс. Современные передатчики могут уложиться в 2 нс, потому и скорость декларируется до 50..70 Мбод. Однако такая скорость возможна только на коротких линиях. Известное мнемоническое правило рекомендует, чтобы произведение скорости передачи в битах в секунду на длину кабеля в метрах не превышало величины 108. Это и дает примерно 1 километр на скорости 100 кбит/с, и 10 метров на скорости 10Мбит/сек. Это из-за возможных отражений (идеального согласования не бывает) и времени на установление сигнала. Конечно, при тщательном согласовании, указанное произведение можно несколько повысить, но не стоит намного. Из этого же правила вытекает, что на скорости 9600 (примерно 10кбит/сек) вроде бы можно передать аж на 10 км. Но: только если у вас будет достаточно толстый кабель. Стандарт подразумевал использование типичного многопарного кабеля 22..26 AWG, и потому для любых скоростей ограничивал длину линии величиной 4000 футов (1200м). Но мы то знаем, что на самом деле, если взять кабель потолще, можно и перекинуть сигнал подальше. Хотя у производителей оборудования обычно написано просто 1200м без вариантов. У большинства потому, что они сами не знают откуда берется число 1200. У некоторых, просто потому, что лучше перебдеть (указывается длина самого тонкого доступного на практике кабеля). Кроме того, производители предпочитают в большие системы продать дополнительно усилители-разветвители или еще какие-нибудь удлинители линии связи.