Коэффициент стоячей волны антенны что это?

rn3rfz › Блог › Для чего нужна настройка си-би антенны и что такое КСВ

Если говорить простыми словами, то настройка си-би антенны нужна для того, чтобы она работала в резонансе на нужном канале (определенной частоте) и всю мощность радиостанции передать в эфир, или, по — другому, в открытое пространство без потерь, и при этом получить максимум усиления по приему.

Допустим, мы имеем рацию (MegaJet-300) с выходной мощностью в 4 ватта и идеально настроенной заводской антенной с КСВ 1, которая установлена по центру крыши автомобиля — то и на выходе получаем те же 4 ватта, а это максимальная дальность связи, на которой Вы можете общаться с другими корреспондентами или пользователями си-би радиостанций.
Так что же такое КСВ от сложного к простому
Так что же такое КСВ? На этот вопрос уже есть развернутый научный ответ в Википедии — КСВ это
«Коэффициент стоячей волны (КСВ, от англ. standing wave ratio, SWR) — отношение наибольшего значения амплитуды напряжённости электрического или магнитного поля стоячей волны в линии передачи к наименьшему»

А если просто, то КСВ — это степень согласования выходного сопротивления рации 50 Ом с входным сопротивлением фидера (кабеля) и антенны, которые так же должны быть равны 50 Ом. То есть сигнал от радиостанции проходит по кабелю через центральную жилу с минимальными потерями в антенну как в режиме приема, так и передачи (падающая волна), а ток (отраженная волна), который протекает по оплетке кабеля в обратную сторону от антенны, практически или равен нулю.

Если линия (фидер, кабель) и нагрузка (антенна) согласованы, то КСВ = 1
Если волновое сопротивление линии и нагрузки различаются, то КСВ > 1

Например: — у нас есть заводская антенна с настроенным кабелем 50 Ом четверть длины волны — примерно 4 метра, остается только настроить антенну, чтобы входное сопротивление стало так же 50 Ом на нужной частоте, а это достигается путем изменения длины штыря (удлиняя, подрезая или подкручиванием с помощью болта в случае с укороченными спиральными антеннами), при этом получаем КСВ близкое к значению 1.

При КСВ более 1 мы имеем неэффективно работающую антенну на прием и, соответственно, на передачу, происходят потери, которые выражаются в процентах.

Приборы для измерения коэффициента стоячей волны «КСВ» «SWR»

Для настройки антенн — измерения «КСВ» «SWR», часто применяют стрелочные приборы заводского изготовления, на рынке достаточно много моделей с разной ценовой категорией от 900 руб. и выше, которые включают в себя кроме основной функции еще и дополнительную — измерение мощности рации.

Отличаются интерфейсом, кнопками управления, частотным диапазоном измерения — на фото выше модель RSM-600 имеет два диапазона измерения по частоте 1.8 — 160 MHz и 140 — 525 MHz плюс два диапазона по мощности 200 и 400W, большая градуированная шкала со значениями ксв от 1 до ∞ и шкала мощности с поддиапазонами 5, 20, 200 Ватт.
Наряду со стрелочными приборами для настройки антенн применяют и антенные анализаторы, функция у них одна, степень согласования оценивают по стандартной формуле и определяют коэффициент стоячей волны — как отношение максимального значения тока или напряжения к минимальному:
КСВ=Umax/Umin или КСВ=Imax/Imin

Антенные анализаторы — это, конечно, более продвинутые приборы, с информативными дисплеями отображающими не только ксв, частоту, но и значение активной и реактивной состовляющей. Имеют функцию сканирования по диапазонам, интерфейс для подключения к компьютеру, выводят графики резонанса антенны по диапазону, что очень удобно для быстрой и качественной настройки.

Однако цены на антенные анализаторы гораздо выше чем на стрелочные измерители ксв, даже самая дешевая модель из Китая обойдется вам более 4000 рублей.
Как настроить ксв автомобильной антенны
Настроить ксв автомобильной антенны достаточно просто, для этого надо иметь прибор для настройки, и знать основное правило — для повышения частоты (резонанса) антенны на нужном канале штырь подрезаем (укорачиваем) или задвигаем внутрь катушки, а для понижения полотно антенны удлиняется (выдвигается) или меняется на новое, более длинное.
Настраивается антенна только на автомобиле, то есть, установлена будь то на кузов, крышку багажника или на универсальный кронштейн, протянут кабель в салон авто к радиостанции.
Перед настройкой обязательно нужно проверить, где находится резонанс антенны или на каком канале показывает минимальное значение ксв, для этого:

Подключаем прибор к радиостанции — гнездо ANT к кабелю антенны через разъем PL259, гнездо TX соединяется через короткий кабель с гнездом рации.

Находим резонанс антенны, то есть минимальное значение ксв — переводим переключатель прибора в положение калибровка CAL, нажимаем тангенту рации, ручкой калибровки выставляем стрелку на максимальное значение шкалы. После этого переводим переключатель ксв метра в положение измерения — SWR, и видим реальное значение ксв в данном канале, перемещаясь по каналам (сеткам) вверх или вниз, вы узнаете, где минимальные показания прибора, то есть резонанс антенны.
Сдвигаем резонанс антенны. Пример: вы настраиваете новую антенну — штырь 1,5 метра, на 15 канал сетки D, нашли минимальные значения ксв 1.3 в 10 канале, что бы этот резонанс переместить в 15 канал нужно укоротить (подрезать, задвинуть) штырь антенны буквально на 0,5 или один сантиметр и повторно произвести измерение.

Коэффициент стоячей волны антенны что это?

При монтаже и настройке систем радиосвязи часто измеряют некую не всем и не совсем ясную величину называемую КСВ. Что же это за характеристика, помимо спектра частот указываемая в характеристиках антенн?
Отвечаем:
Коэффициент стоячей волны (КСВ), коэффициент бегущей волны (КБВ), обратные потери это — термины, характеризующие степень согласования радиочастотного тракта.
В высокочастотных линиях передачи соответствие сопротивления источника сигнала волновому сопротивлению линии определяет условия прохождения сигнала. При равенстве этих сопротивлений в линии возникает режим бегущей волны, при котором вся мощность источника сигнала передается в нагрузку.

Измеренное на постоянном токе тестером сопротивление кабеля покажет либо холостой ход либо короткое замыкание в зависимости оттого, что подключено к другому концу кабеля, а волновое сопротивление коаксиального кабеля, определяется соотношением диаметров внутреннего и внешнего проводников кабеля и характеристиками изолятора между ними. Волновое сопротивление это сопротивление, которое оказывает линия бегущей волне высокочастотного сигнала. Волновое сопротивление постоянно вдоль линии и не зависит от её длины. Для радиочастот волновое сопротивление линии считают неизменным и чисто активным. Оно приблизительно равно:
где L и С распределенные емкость и индуктивность линии;




Где: D – диаметр внешнего проводника, d – диаметр внутреннего проводника, — диэлектрическая проницаемость изолятора.
При расчете радиочастотных кабелей стремятся получить оптимальную конструкцию, обеспечивающую высокие электрические характеристики при наименьшем расходе материалов.
При использовании меди для внутреннего и внешнего проводников радиочастотного кабеля справедливы соотношения:
минимальное затухание в кабеле достигается при отношении диаметров

максимальная электрическая прочность достигается при:

максимум передаваемой мощности при:

исходя из этих соотношений, выбраны волновые сопротивления радиочастотных кабелей, выпускаемых промышленностью.
Точность и стабильность параметров кабеля зависят от точности изготовления диаметров внутреннего и внешнего проводников и стабильности параметров диэлектрика.
В идеально согласованной линии отражение отсутствует. Когда сопротивление нагрузки равно волновому сопротивлению линии передачи, падающая волна полностью поглощается в нагрузке, отраженная и стоячая волны отсутствуют. Такой режим называется режимом бегущей волны.
При коротком замыкании или холостом ходе линии на конце линии, падающая волна полностью отражается обратно. Отраженная волна складывается с падающей, и результирующая амплитуда в любом сечении линии является суммой амплитуд падающей и отраженной волн. Максимум напряжения называется пучностью, минимум напряжения узлом напряжения. Узлы и пучности не движутся относительно линии передачи. Такой режим называется режимом стоячей волны.
Если на выходе линии передачи подключена произвольная нагрузка, только часть падающей волны отражается обратно. В зависимости от степени рассогласования возрастает отраженная волна. В линии одновременно устанавливаются стоячая и бегущая волны. Это режим смешанных или комбинированных волн.
Коэффициент стоячей волны (КСВ) это безразмерная величина, характеризующая соотношение падающей и отраженной волн в линии, то есть степень приближения к режиму бегущей волны:
; как видно по определению, КСВ может меняться от 1 до бесконечности;
КСВ меняется пропорционально соотношению сопротивления нагрузки к волновому сопротивлению линии :

Коэффициент бегущей волны это величина обратная КСВ:
КБВ= может меняться от 0 до 1;

  • Обратные потери (return loss) — это отношение мощностей падающей и отраженной волн, выраженное в децибелах.
Читайте также  Какая программа не является антивирусной?

или наоборот:
Обратные потери удобно использовать при оценке эффективности фидерного тракта, когда потери кабеля, выражаемые в дБ/м можно просто просуммировать с обратными потерями.
Величина потерь на рассогласование зависит от КСВ:
в разах или в децибелах.
Передаваемая энергия при несогласованной нагрузкевсегда меньше, чем при согласованной. Передатчик, работающий на несогласованную нагрузку, не отдает в линию всю ту мощность, которую бы отдавал в согласованную. Фактически, это не потери в линии, а снижение мощности, отдаваемой в линию передатчиком. Насколько влияет КСВ на снижение, видно из таблицы:

КСВ

Мощность попадающая в нагрузку

Обратные потери
RL

Все о коэффициенте стоячей волны

• В линии с КСВ>1 наличие отраженной мощности не приводит к потерям передаваемой мощности, хотя некоторые потери наблюдаются из-за конечного затухания в линии в фидерной линии без потерь нет потерь мощности из-за отражения независимо от величины КСВ. На всех KB диапазонах с кабелем, имеющим низкие потери, потери в рассогласованной линии обычно незначительны, однако на УКВ могут быть существенными, а на СВЧ—даже чрезвычайно большими. Затухание в кабеле зависит, прежде всего, от характеристик самого кабеля и его длины. При работе на KB кабель должен быть очень длинным или очень плохим, чтобы потери в кабеле стали весьма существенными.

Отраженная мощность не течет обратно в передатчик и не повреждает его. Повреждения, иногда приписываемые высокому КСВ, обычно вызывает работа выходного каскада передатчика на рассогласованную нагрузку. Передатчик не «видит» КСВ, он «видит» только импеданс нагрузки, который зависит и от КСВ. Это означает, что импеданс нагрузки можно сделать точно соответствующим требуемому (например, с помощью антенного тюнера), не беспокоясь о КСВ в фидере.

• Усилия, затрачиваемые на снижение КСВ ниже 2:1 в любой коаксиальной линии, вообще представляются затраченными впустую — с точки зрения увеличения эффективности излучения антенны, но целесообразны в том случае, если схема защиты передатчика срабатывает, например, при КСВ>1,5.

Высокий КСВ не обязательно указывает, что антенна работает плохо — эффективность излучения антенны определяется соотношением ее сопротивления излучения к общему входному сопротивлению.

Низкий КСВ — не обязательно свидетельство того, что антенная система является хорошей. Напротив, низкий КСВ в широкой полосе частот является поводом для подозрений, что, например, в диполе или вертикальной антенне велико сопротивление потерь, обусловленное плохими соединениями и контактами, неэффективной системой заземления, потерями в кабеле, попаданием влаги в линию и т.д. Так, эквивалент нагрузки обеспечивает в линии КСВ=1,0, но он вообще не излучает, а короткая вертикальная антенна с сопротивлением излучения 0,1 Ом и потерями сопротивления 49,9 Ом излучает лишь 0,2% от поступающей мощности, обеспечивая при этом КСВ 1,0 в фидере.

• Для достижения максимального ВЧ тока излучатель антенной системы не обязательно должен иметь резонансную длину и не требует фидера определенной длины. Существенное рассогласование между линией питания и излучателем не препятствует поглощению излучателем всей реально поступающей мощности. При использовании соответствующего согласования (например, антенного тюнера) для компенсации реактивности не резонансного излучателя в месте подключения фидерной линии случайной длины антенная система является согласованной, и фактически вся подводимая мощность может эффективно излучаться.

На КСВ в фидерной линии не влияет настройка антенного тюнера, установленного возле передатчика. Низкий КСВ в линии, достигнутый с помощью тюнера, обычно является свидетельством того, что в процессе настройки тюнера произошло рассогласование между передатчиком и входом антенного тюнера, и передатчик работает на несогласованную нагрузку.

• Вопреки расхожим представлениям, с хорошим симметричным (балансным) антенным тюнером и открытой двухпроводной фидерной линией излучение питаемого в центре диполя длиной 80 м, работающего в диапазоне 3,5 МГц, не намного эффективнее излучения такой же антенны длиной 48 м, работающей в том же диапазоне и с той же мощностью передатчика. Эффективность излучения диполя, настроенного в резонанс на частоте, например, 3750 кГц, практически такая же, как и на частоте 3500 или 4000 кГц при использовании любого фидера разумной длины; хотя можно ожидать, что КСВ на краях диапазона может достигать 5 и что коаксиальный кабель в действительности будет работать как настроенная линия. В этом случае, разумеется, потребуется использовать соответствующее устройство согласования (например, антенный тюнер) между передатчиком и фидером. Если для достижения согласования коаксиальный фидер любой антенной системы требует определенной длины, тот же самый входной импеданс можно получить с кабелем любой длины с помощью соответствующей простой цепи согласования из индуктивностей и емкостей.

• Высокий КСВ в коаксиальном фидере, вызванный значительным рассогласованием характеристического сопротивления линии и входного сопротивления антенны, сам по себе не вызывает появления ВЧ тока на внешней поверхности оплетки кабеля и излучения фидерной линии. В диапазонах коротких волн высокий КСВ в любой открытой линии, работающей с высоким КСВ, не будет ни вызывать протекание антенного тока по линии, ни приводить к излучению линии при условии, что токи в линии сбалансированы, и расстояние между проводниками линии мало по сравнению с рабочей длиной волны (это справедливо и на УКВ при условии отсутствия острых изгибов линии). Ток на внешней поверхности оплетки фидера и излучение фидера практически отсутствуют, если антенна сбалансирована относительно земли и фидера (например, при использовании горизонтальной антенны фидер должен располагаться вертикально); в таких случаях не нужно применять симметрирующие устройства (балуны) между антенной и фидером.

КСВ-метры, установленные на участке между антенной и фидером, не обеспечивают более точное измерение КСВ. КСВ в фидере не может регулироваться изменением длины линии. Если показания КСВ-метра при перемещении по линии существенно различаются, это может указывать на антенный эффект фидера, вызываемый током, текущим по внешней стороне оплетки коаксиального кабеля, и/или на плохую конструкцию КСВ-метра, но не на то, что КСВ изменяется вдоль линии.

• Любая реактивность, добавленная к существующей резонансной нагрузке (имеющей только активное сопротивление) с целью снижения КСВ в линии, вызовет только увеличение отражения. Самый низкий КСВ в фидере наблюдается на резонансной частоте излучающего элемента и совершенно не зависит от длины фидера.

• Эффективность излучения диполей различных типов (из тонкого провода, петлевого диполя, «толстого» диполя, трапового или коаксиального диполя) практически одинакова при условии, что каждый из них имеет незначительные омические потери и питается одинаковой мощностью. Однако «толстые» и петлевые диполи имеют более широкую рабочую полосу частот по сравнению с антенной из тонкого провода.

• Если входное сопротивление антенны отличается от характеристического сопротивления фидерной линии, то сопротивление нагрузки передатчика может весьма значительно отличаться от характеристического сопротивления линии (если электрическая длина линии не кратна L/2), и от сопротивления в месте подключения к антенне. В этом случае импеданс нагрузки передатчика зависит еще и от длины фидера, который действует как трансформатор сопротивлений. В таких случаях, если не установлена подходящая цепь согласования между передатчиком и линией передачи, импеданс нагрузки может быть комплексным (т.е. иметь активную и реактивную составляющие), и с ним выходная схема передатчика может не справиться. В этом случае изменением длины линии передачи иногда удается обеспечить согласование нагрузки с передатчиком — именно это обстоятельство, скорее чем любые потери, связанные с КСВ, привело к возникновению многих неверных представлений о работе фидерных линий.

Читайте также  Огнетушители виды типы и классы огнетушителей

Любая питаемая в центре антенна любой разумной длины с любым типом фидера с низкими потерями будет обеспечивать достаточно эффективное излучение электромагнитной энергии. При этом, как правило, требуется хороший антенный тюнер, если передатчик рассчитан на работу с низкоомной нагрузкой (например, 50 Ом). Этим объясняется тот факт, что многие годы питаемый в центре диполь остается популярной многодиапазонной антенной.

Коэффициент стоячей волны

Коэффициент стоячей волны — Отношение наибольшего значения амплитуды напряженности электрического или магнитного поля стоячей волны в линии передачи к наименьшему [1] .

Характеризует степень согласования антенны и фидера (также говорят о согласовании выхода передатчика и фидера) и является частотнозависимой величиной. Обратная величина КСВ называется КБВ — коэффициент бегущей волны. Следует различать величины КСВ и КСВН (коэффициент стоячей волны по напряжению): первая высчитывается по мощности, вторая — по амплитуде напряжения и на практике используется чаще; в общем случае эти понятия эквивалентны.

Коэффициент стоячей волны по напряжению вычисляется по формуле: ,
где U1 и U2 — амплитуды падающей и отражённой волн соответственно.
Можно установить связь между KCBH и коэффициентом отражения Г:
Также величину коэффициента стоячей волны можно получить из выражений для S-параметров (см. ниже).

В идеальном случае КСВН = 1, это означает, что отраженная волна отсутствует. При появлении отраженной волны КСВ возрастает в прямой зависимости от степени рассогласования тракта и нагрузки. Допустимые значения КСВН на рабочей частоте или в полосе частот для различных устройств регламентируются в технических условиях и ГОСТах. Обычно приемлемые значения коэффициента лежат в пределах от 1,1 до 2,0.

Значение КСВ зависит от многих факторов, например:

  • Волновое сопротивление СВЧ кабеля и источника СВЧ сигнала
  • Неоднородности, спайки в кабелях или волноводах
  • Качество разделки кабеля в СВЧ-соединителях (разъёмах)
  • Наличие переходных соединителей
  • Сопротивление антенны в точке подключения кабеля
  • Качество изготовления и настройки источника сигнала и потребителя (антенны и др.)

Измеряют КСВН, например, с помощью включённых в тракт в противоположном направлении двух направленных ответвителей. В космической технике КСВН измеряется встроенными в волноводные тракты датчиками КСВ. Современные анализаторы цепей также имеют встроенные датчики КСВН.
При проведении измерений КСВН необходимо учитывать, что затухание сигнала в кабеле приводит к погрешности измерений. Это объясняется тем, что как падающая, так и отраженная волны испытывают затухание. В таких случая КСВН рассчитывается следующим образом: ,

где К — коэффициент ослабления отраженной волны, который вычисляется следующим образом: ,
здесь В — удельное затухание, дБ/м;
L — длина кабеля, м;
а множитель 2 учитывает тот факт, что сигнал испытывает ослабление при передаче от источника СВЧ сигнала к антенне и на обратном пути. Так, при использовании кабеля PK50-7-15 удельное затухание на частотах Си-Би (около 27 МГц) составляет 0,04 дБ/м, то при длине кабеля 40 м отраженный сигнал будет испытывать затухание 0,04•2•40=3,2 дБ. Это приведет к тому, что при реальном значении КСВН, равном 2,00, прибор покажет только 1,38; при реальном значении 3,00 прибор покажет около 2,08.

Плохая (высокая) величина КСВ(Н) нагрузки приводит не только к ухудшению КПД из-за уменьшения поступившей в нагрузку полезной мощности. Возможны и другие последствия:

  • Выход из строя мощного усилителя или транзистора, поскольку на его выходе (коллекторе) просуммируются (в худшем случае) напряжение выходного сигнала и отражённая волна, что может превысить максимальное допустимое напряжение полупроводникового перехода.
  • Ухудшение неравномерности АЧХ тракта.
  • Возбуждение сопрягаемых каскадов.

Для устранения этого могут применяться защитные вентили или циркуляторы. Но при продолжительной работе на плохую нагрузку, они могут выйти из строя. Для маломощных линий передачи могут использоваться согласующие аттенюаторы.

Связь КСВН с S-параметрами четырёхполюсника

Коэффициент стоячей волны можно однозначно связать с параметрами передачи четырёхполюсника (S-параметрами):

где — комплексный коэффициент отражения сигнала от входа измеряемого тракта;

Правила настройки антенны и измерения КСВ

После того, как антенна установлена, ее необходимо настроить по минимуму значения КСВ в середине участка рабочих частот или если предполагается работать только на одной частоте, по минимальному значению КСВ на этой частоте.
Что такое КСВ? КСВ — коэффициент стоячей волны — это мера согласования антенно-фидерного тракта. Он показывает процент потерь мощности в антенне. Потери мощности при различных значениях КСВ приведены в таблице 1.

Таблица 1. Потери мощности при различных значениях КСВ

Рис 1. Схема подключения КСВ метра

ВНИМАНИЕ. Пpибоp должен допускать pаботу пpи Вашей выходной мощности! То есть если прибор рассчитан на максимальную мощность 10Вт, а ему на вход подать 100Вт, то результат будет вполне очевиден в виде дыма и вполне осязаем органами обоняния. Переключатель нужно поставить в положение FWD (прямое включение). Включив передачу, нужно выставить ручкой стрелку-указатель на конец шкалы. Таким образом делается калибровка показаний прибора. Калибровать прибор нужно каждый раз при изменении рабочей частоты. Далее, переключив (при отключенной передаче) прибор в положение REF (обратное включение), включить передачу и считать значение КСВ по шкале прибора.

Рассмотрим пример настройки антенны на среднюю частоту сетки С (частота 27,205МГц) изменением длины штыря. Сначала нужно измерить значение КСВ на 1 канале сетки С. Затем на последнем (40) канале сетки С. Если значение КСВ больше 3 в обоих случаях, значит антенна установлена неправильно, не рассчитана на работу в этом диапазоне или имеет неисправности. Если КСВ, измеренный на 1 канале, больше значения КСВ на 40 канале, значит длину штыря нужно укоротить, если наоборот — то штырь необходимо удлинить (выдвинуть из держателя). Встаем на 20 канал сетки С, измеряем КСВ, запоминаем его значение. Откручиваем винты, фиксирующие штырь, двигаем его на 7-10 мм в нужную сторону, затягиваем винты, проверяем КСВ снова. Если штырь вставлен до предела, а КСВ все еще высокий, то придется укорачивать штырь физически. Если штырь выдвинут максимально, то придется увеличивать длину согласующей катушки. Устанавливаем штырь по середине крепления. Откусываем 5-7 мм, измеряем КСВ, снова откусываем. При этом следим чтобы значение КСВ уменьшалось. Как только оно достигнет минимума и начнет увеличиваться, прекращаем издеваться над штырем и далее регулируем его длину изменением положения в антенне Таким образом находим минимум КСВ.

— Обратите внимание, что антенну надо настраивать только по месту ее ОКОНЧАТЕЛЬНОЙ установки. Это значит, что, перенеся антенну на другое место, ее снова необходимо будет настраивать.

— Если Вы получили КСВ порядка 1,1-1,3, это отличный результат.

— Если Вы получили КСВ порядка 1,3-1,7, это тоже неплохо и Вам не о чем беспокоиться.

— Если КСВ 1,8 — 2, то следует обратить внимание на потери в ВЧ разъемах (неправильная разделка кабеля, плохая пропайка центральной жилы кабеля и т. д.) Для антенны такой уровень согласования будет означать, что у нее есть проблемы с согласованием, и она нуждается в настройке.

Читайте также  ОУ 5 огнетушитель его характеристика

— КСВ 2,1 — 5 означает явную неисправность в антенне или неправильную ее установку. КСВ более 5 означает обрыв центральной жилы в кабеле или в антенне.

Из другого источника

Длины 50-омного кабеля в полуволнах, режим “полуволнового повторителя” ( верно для кабелей со сплошной полиэтиленовой изоляцией центральной жилы )

Количество полуволн
Сетка “C” Cетка ”D” Сетки “C”& “D”

Средняя частота МГц
27.5

Длина отрезка кабеля
1 3.639м 3.580м 3.611м
2 7.278м 7.160м 7.222м
3 10.917м 10.739м 10.833м
4 14.560м 14.319м 14.444м
5 18.195м 17.899м 18.055м