Из каких моделей состоит экспертная система?

Основные модели БЗ экспертных систем

Особенности экспертных систем, архитектура

Экспертная система (ЭС) — это компьютерная программа, которая моделирует рассуждения человека-эксперта в некоторой определенной области и использует для этого базу знаний, содержащую факты и правила об этой области, специальную процедуру логического вывода.
Разработка систем, основанных на знаниях, является составной частью исследований по ИИ, и имеет целью создание компьютерных методов решения проблем, обычно требующих привлечения экспертов-специалистов.
Взаимодействие эксперта, пользователя и структурных частей системы можно представить в виде следующей базовой структуры.

Рис.1. Базовая структура экспертной системы

Рассмотрим архитектуру экспертной системы.
База знаний. Основу ЭС составляет база знаний (БЗ), хранящая множество фактов и набор правил, полученных от экспертов, из специальной литературы. БЗ отличается от базы данных тем, что в базе данных единицы информации представляют собой не связанные друг с другом сведения, формулы, теоремы, аксиомы. В БЗ те же элементы уже связаны как между собой, так и с понятиями внешнего мира. Информация в БЗ — это все необходимое для понимания, формирования и решения проблемы. Она содержит два основных элемента: факты (данные) из предметной области и специальные эвристики или правила, которые управляют использованием фактов при решении проблемы. Знания могут быть представлены несколькими способами: логической моделью, продукциями, фреймами и семантическими сетями.
Машина логического вывода (МЛВ). Главным в ЭС является машина логического вывода, осуществляющая поиск в базе знаний для получения решения. Она манипулирует информацией из БЗ, определяя в каком порядке следует выявлять взаимосвязи и делать выводы. МЛВ используются для моделирования рассуждений, обработки вопросов и подготовки ответов.
Интерфейс пользователя. ЭС содержат языковой процессор для общения между пользователем и компьютером. Это общение может быть организовано с помощью естественного языка, сопровождаться графикой или многооконным меню. Интерфейс пользователя должен обеспечивать два режима работы: режим приобретения знаний и режим решения задач. В режиме приобретения знаний эксперт общается с ЭС при посредничестве инженера знаний. В режиме решения задач ЭС для пользователя является или просто носителем информации (справочником), или позволяет получать результат и объясняет способ его получения.
Эксперты поставляют знания в экспертную систему и оценивают правильность получаемых результатов.
Инженер по знаниям — специалист по искусственному интеллекту, выступающий в роли промежуточного буфера между экспертом и базой знаний. Помогает эксперту выявить и структурировать знания. Синонимы: когнитолог, инженер-интерпретатор, аналитик. Программисты разрабатывают программное обеспечение экспертной системы и осуществляют его сопряжение со средой, в которой оно будет использоваться
Пользователь — специалист предметной области, для которого предназначена система, обычно его квалификация недостаточно высока, и поэтому он нуждается в помощи и поддержке своей деятельности со стороны экспертной системы.
Многочисленные экспертные системы решают в настоящее время задачи в таких областях, как медицина, образование, бизнес, дизайн и научные исследования.

Области применения ЭС

Области применения систем, основанных на знаниях, могут быть сгруппированы в несколько основных классов: медицинская диагностика, контроль и управление, диагностика неисправностей в механических и электрических устройствах, обучение.

а) Медицинская диагностика.

Диагностические системы используются для установления связи между нарушениями деятельности организма и их возможными причинами. Наиболее известна диагностическая система MYCIN, которая предназначена для диагностики и наблюдения за состоянием больного при менингите и бактериальных инфекциях. Ее первая версия была разработана в Стенфордском университете в середине 70-х годов. В настоящее время эта система ставит диагноз на уровне врача-специалиста. Она имеет расширенную базу знаний, благодаря чему может применяться и в других областях медицины.

Прогнозирующие системы предсказывают возможные результаты или события на основе данных о текущем состоянии объекта. Программная система “Завоевание Уолл-стрита” может проанализировать конъюнктуру рынка и с помощью статистических методов алгоритмов разработать для вас план капиталовложений на перспективу. Она не относится к числу систем, основанных на знаниях, поскольку использует процедуры и алгоритмы традиционного программирования. Хотя пока еще отсутствуют ЭС, которые способны за счет своей информации о конъюнктуре рынка помочь вам увеличить капитал, прогнозирующие системы уже сегодня могут предсказывать погоду, урожайность и поток пассажиров. Даже на персональном компьютере, установив простую систему, основанную на знаниях, вы можете получить местный прогноз погоды.

Планирующие системы предназначены для достижения конкретных целей при решении задач с большим числом переменных. Дамасская фирма Informat впервые в торговой практике предоставляет в распоряжении покупателей 13 рабочих станций, установленных в холле своего офиса, на которых проводятся бесплатные 15-минутные консультации с целью помочь покупателям выбрать компьютер, в наибольшей степени отвечающий их потребностям и бюджету. Кроме того, компания Boeing применяет ЭС для проектирования космических станций, а также для выявления причин отказов самолетных двигателей и ремонта вертолетов. Экспертная система XCON, созданная фирмой DEC, служит для определения или изменения конфигурации компьютерных систем типа VAX и в соответствии с требованиями покупателя. Фирма DEC разрабатывает более мощную систему XSEL, включающую базу знаний системы XCON, с целью оказания помощи покупателям при выборе вычислительных систем с нужной конфигурацией. В отличие от XCON система XSEL является интерактивной.

Интерпретирующие системы обладают способностью получать определенные заключения на основе результатов наблюдения. Система PROSPECTOR, одна из наиболее известных систем интерпретирующего типа, объединяет знания девяти экспертов. Используя сочетания девяти методов экспертизы, системе удалось обнаружить залежи руды стоимостью в миллион долларов, причем наличие этих залежей не предполагал ни один из девяти экспертов. Другая интерпретирующая система- HASP/SIAP. Она определяет местоположение и типы судов в тихом океане по данным акустических систем слежения.

д) Контроль и управление.

Системы, основанные на знаниях, могут применятся в качестве интеллектуальных систем контроля и принимать решения, анализируя данные, поступающие от нескольких источников. Такие системы уже работают на атомных электростанциях, управляют воздушным движением и осуществляют медицинский контроль. Они могут быть также полезны при регулировании финансовой деятельности предприятия и оказывать помощь при выработке решений в критических ситуациях.

е) Диагностика неисправностей в механических и электрических устройствах.

В этой сфере системы, основанные на знаниях, незаменимы как при ремонте механических и электрических машин (автомобилей, дизельных локомотивов и т.д.), так и при устранении неисправностей и ошибок в аппаратном и программном обеспечении компьютеров.

Системы, основанные на знаниях, могут входить составной частью в компьютерные системы обучения. Система получает информацию о деятельности некоторого объекта (например, студента) и анализирует его поведение. База знаний изменяется в соответствии с поведением объекта. Примером этого обучения может служить компьютерная игра, сложность которой увеличивается по мере возрастания степени квалификации играющего. Одной из наиболее интересных обучающих ЭС является разработанная Д.Ленатом система EURISCO, которая использует простые эвристики. Эта система была опробована в игре Т.Тревевеллера, имитирующая боевые действия. Суть игры состоит в том, чтобы определить состав флотилии, способной нанести поражение в условиях неизменяемого множества правил. Система EURISCO включила в состав флотилии небольшие, способные провести быструю атаку корабли и одно очень маленькое скоростное судно и постоянно выигрывала в течение трех лет, несмотря на то, что в стремлении воспрепятствовать этому правила игры меняли каждый год.

Большинство ЭС включают знания, по содержанию которых их можно отнести одновременно к нескольким типам. Например, обучающая система может также обладать знаниями, позволяющими выполнять диагностику и планирование. Она определяет способности обучаемого по основным направлениям курса, а затем с учетом полученных данных составляет учебный план. Управляющая система может применяться для целей контроля, диагностики, прогнозирования и планирования. Система, обеспечивающая сохранность жилища, может следить за окружающей обстановкой, распознавать происходящие события (например, открылось окно), выдавать прогноз (вор-взломщик намеревается проникнуть в дом) и составлять план действий (вызвать полицию).

Основные модели БЗ экспертных систем

Модели представления знаний
Логические модели представления знаний реализуются средствами логики пре­дикатов. Предикатом называется функция, принимающая только два значения — истина и ложь — и предназначенная для выражения свойств объектов или связей между ними. Выражение, в котором утверждается или отрицается наличие каких-либо свойств у объекта, называется высказыванием.
Наиболее простым языком логики является исчисление высказываний, в котором отсутствуют переменные. Любому высказыванию можно приписать значение истинно или ложно.

Продукционная модель, или модель, основанная на правилах, позволяет представить знания в виде предложений типа: Если (условие), то (действие).
Под условием понимается некоторое предложение-образец, по которому осуществляется поиск в базе знаний, а под действием — действия, выполняемые при успешном исходе поиска (они могут быть промежуточными, выступающими далее как условия, и терминальными или целевыми, завершающими работу системы).
Продукционные системы делят на два типа — с прямыми и обратными выводами. При прямом выводе рассуждение ведется от данных к поиску цели, а при обратном производится поиск доказательства или опровержения некоторой цели— к данным. Часто используются комбинации прямой и обратной цепи рассуждений. Данные — это исходные факты, на основании которых запускается машина вывода — программа, перебирающая правила из базы.
Продукции выгодны для выражения знаний, которые могут принимать форму перехода между состояниями: ситуация ® действие; посылка ® заключение; причина ® следствие.
Продукции по сравнению с другими формами представления знаний имеют следующие преимущества:

  • модульность;
  • наглядность;
  • единообразие структуры (основные компоненты продукционной системы могут применяться для построения интеллектуальных систем с различной проблемной ориентацией);
  • естественность (вывод заключения в продукционной системе во многом ана­логичен процессу рассуждений эксперта);
  • легкость внесения дополнений и простота механизма логического вывода;
  • гибкость родовидовой иерархии понятий, которая поддерживается только как связи между правилами (изменение правила влечет за собой изменение в иерархии).

Семантические сети
Термин семантическая означает смысловая, а сама семантика — это наука, устанавливающая отношения между символами и объектами, которые они обозначают, т.е. наука, определяющая смысл знаков.

Фрейм(англ. frame — каркас или рамка) предложен М.Минским в 70-е гг. как структура знаний для восприятия пространственных сцен. Фрейм (дословно — «рамка») — это единица представ­ления знаний, детали которой могут изменяться в соответствии с текущей ситуацией. Фрейм — это минимально возможное описание сущности какого-либо явления, события, ситуации, процесса или объекта. Фрейм – это абстрактный образ для представления некоего стереотипа восприятия. В психологии и философии известно понятие абстрактного образа. В теории фреймов такой образ называется фреймом. Фреймом называется также и формализованная модель для отображения образа. Структуру фрейма можно представить так:

Читайте также  ОП 8 огнетушитель его характеристика

Экспертная система. Классификация. Обзор существующих экспертных систем

Рубрика: Информационные технологии

Дата публикации: 21.10.2016 2016-10-21

Статья просмотрена: 11583 раза

Библиографическое описание:

Дошина, А. Д. Экспертная система. Классификация. Обзор существующих экспертных систем / А. Д. Дошина. — Текст : непосредственный // Молодой ученый. — 2016. — № 21 (125). — С. 756-758. — URL: https://moluch.ru/archive/125/34485/ (дата обращения: 26.07.2021).

Keywords: expert system, structure expert system, classification of expert systems.

Экспертная система (ЭС, англ.expert system) — компьютерная система, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации. Современные экспертные системы взяли свое начало в 1970-х годах с трудов исследователей искусственного интеллекта, а в 1980-х получили коммерческое подкрепление. Первые подобия экспертных систем были предложены в 1832 году С. Н. Корсаковым, создавшим механические устройства, так называемые «интеллектуальные машины», позволявшие отыскать решения по некоторым условиям. Примером такой системы является система, позволяющая подбирать необходимые медицинские препараты по симптомам заболевания пациента.

В сфере информационных технологий экспертные системы рассматриваются в совокупности с базами знаний как модели поведения экспертов в определенной области знаний с использованием процедур логического вывода и принятия решений, а базы знаний — как совокупность фактов и правил логического вывода в выбранной предметной области деятельности.

Подобные задачи выполняет программный продукт, называемый «Мастер» (англ. Wizard). Мастера применяются в прикладных и системных программах для упрощения интерактивного общения с пользователем. Основным отличием данных программ — это отсутствие базы знаний — все действия запрограммированы.

Другие подобные программы — поисковые или справочные (энциклопедические) системы. Они предоставляют релевантные, т. е. подходящие запросу пользователя, разделы базы статей.

В настоящее время «классическая» концепция экспертных систем 70–80 годов переживает серьезный кризис, связанный с её сильной ориентацией на текстовый человеко-машинный интерфейс, почти полностью вытесненный графическим интерфейсом (GUI). Помимо этого, «классическая» концепция экспертных систем плохо согласуется с реляционной моделью данных, что создает сложности в работе с современными промышленными системами управления базами данных (СУБД). Время от времени энтузиастами предпринимаются попытки объединить «классический» и современный подход к построению пользовательского интерфейса, но они не находят поддержки среди крупных компаний-производителей.

Структура ЭС

В состав ЭС входят следующие элементы:

‒ Интеллектуальный редактор базы знаний

‒ Инженер по знаниям

‒ Рабочая (оперативная) память

‒ Решатель (механизм вывода)

База знаний содержит в себе правила анализа информации по проблеме, полученной от пользователя. ЭС анализирует эту информацию и дает рекомендации по разрешению конкретной проблемы.

База знаний состоит из двух составляющих:

 факты — статические сведения о предметной области;

 правила — набор инструкций, который позволяет выводить новые факты, исходя из уже известных.

В рамках логической модели базы знаний формируются на языке Пролог с помощью предикатов для описания фактов и правил логического вывода.

Обычно факты в базе знаний описывают те явления, которые являются постоянными для данной предметной области. Данные, зависящие от условий конкретной задачи, ЭС получает от пользователя в процессе работы и сохраняет в рабочей памяти.

База знаний ЭС создается при помощи трех групп людей:

  1. эксперты той проблемной области, к которой относятся задачи, решаемые ЭС;
  2. инженеры по знаниям, являющиеся специалистами по разработке ИИС;
  3. программисты, осуществляющие реализацию ЭС.

Режимы функционирования

ЭС может функционировать в 2-х режимах:

  1. Режим ввода знаний — эксперт с помощью инженера по знаниям вводит сведения о предметной области посредством редактора базы знаний.
  2. Режим консультации — пользователь ведет диалог с ЭС, сообщая ей о текущей задаче, и получает рекомендации.

Классификация ЭС

По решаемой задаче:

По связи среальным временем:

 Статические — решающие задачи в условиях, не изменяющихся во времени исходных данных и знаний.

 Квазидинамические — интерпретируют ситуацию, которая меняется с некоторым фиксированным интервалом времени.

 Динамические — решающие задачи в условиях изменяющихся во времени исходных данных и знаний.

Этапы разработки ЭС

‒ Этап идентификации проблем — определяются задачи, которые подлежат решению, выявляются цели разработки, определяются эксперты и типы пользователей.

‒ Этап извлечения знаний — проводится содержательный анализ проблемной области, выявляются используемые понятия и их взаимосвязи, определяются методы решения задач.

‒ Этап структурирования знаний — выбираются ИС и определяются способы представления всех видов знаний, формализуются основные понятия, определяются способы интерпретации знаний, моделируется работа системы, оценивается адекватность целям системы зафиксированных понятий, методов решений, средств представления и манипулирования знаниями.

‒ Этап формализации — осуществляется наполнение экспертом базы знаний. В связи с тем, что основой ЭС являются знания, данный этап является наиболее важным и наиболее трудоемким этапом разработки ЭС. Процесс приобретения знаний разделяют на извлечение знаний из эксперта, организацию знаний, обеспечивающую эффективную работу системы, и представление знаний в виде, понятном ЭС. Процесс приобретения знаний осуществляется инженером по знаниям на основе анализа деятельности эксперта по решению реальных задач.

‒ Реализация ЭС — создается один или несколько прототипов ЭС, решающие требуемые задачи.

‒ Этап тестирования — производится оценка выбранного способа представления знаний в ЭС в целом.

Наиболее известные ЭС

CLIPS — весьма популярная оболочка для построения ЭС. CLIPS является продукционной системой. Реализация вывода использует алгоритм Rete. CLIPS является одной из наиболее широко используемых инструментальных сред для разработки экспертных систем благодаря своей скорости, эффективности и бесплатности.CLIPS разработан для применения в качестве языка прямогологического вывода(forward chaining) и в своей оригинальной версии не поддерживает обратного вывода (backward chaining). Как и другие экспертные системы, CLIPS имеет дело с правилами и фактами.

OpenCyc — мощная динамическая ЭС с глобальной онтологической моделью и поддержкой независимых контекстов. OpenCyc является сокращенным открытый вариантомбазы знаний Cyc. В БД OpenCyc содержится 47000 понятий и 300000 фактов.

WolframAlpha — база знаний и набор вычислительных алгоритмов, интеллектуальный «вычислительный движок знаний». Wolfram Alpha вычисляет ответы на большое количество разнообразных вопросов. Для подбора ответов механизм использует встроенные модели из разных областей знаний, заполненные данными и алгоритмами, которые и представляют собой реальные познания.

MYCIN — наиболее известная диагностическая система, которая предназначена для диагностики и наблюдения за состоянием больного при менингите и бактериальных инфекциях. Также Mycin использовалась для диагностики заболеваний свертываемости крови. MYCIN оперировала с помощью довольно простоймашины вывода, и базы знаний из

HASP/SIAP — интерпретирующая система, которая определяет местоположение и типы судов в Тихом океане по данным акустических систем слежения. Данные имеют вид сонограмм, являющихся аналоговыми записями спектров принятой датчиками звуковой энергии. Для их интерпретации система применяет знания о характерных особенностях сонограмм различных типов кораблей.

Акинатор — интернет-игра. Игрок должен загадать любого персонажа, а Акинатор должен его отгадать, задавая вопросы. База знаний автоматически пополняется, поэтому программа может отгадать практически любого известного персонажа. На каждом вопросе Акинатор пытается выбрать такой вопрос, который отсеет наибольшее количество вариантов. Каждый раз после вашего ответа у Акинатора «в голове» остаётся список персонажей, которые соответствуют вашим ответам.

IBMWatson — суперкомпьютер фирмы IBM, способный понимать вопросы, сформулированные на естественном языке, и находить на них ответы в базе данных. В первую очередь Watson стали учить медицине, а конкретно, онкологии. Архитектура Watson такова, что позволяет осуществлять параллельные и распределенные вычисления, т. е. сразу работать с множеством задач в параллельном режиме. Watson способен работать с супербольшими данными, т. е. структурированной и неструктурированной информацией.

Вывод

В настоящее время экспертные системы используются во многих областях нашей жизни: банковское дело, бухгалтерский учет, медицинские обследования и т. д. Но использование экспертных систем неоднозначно. Наряду с тем, что они облегчают работу, при неумелом и не спланированном использовании экспертные системы могут только усложнить ситуацию. Это обусловлено тем, что универсальная экспертная система, не включающая в себя спецификации определенных компаний, не может дать гарантированно правильный ответ.

Несмотря на некоторые недостатки, за экспертными системами будущее. Постоянное совершенствование подобных систем неизбежно приведет к активному их использованию во всех сферах человеческой жизни. Конечно, компьютер не сможет полностью заменить человека, потому что только человек способен находить творческие, нестандартные решения, но сможет сильно облегчить работу эксперта.

  1. Сложносистемное мышление: Материя, разум, человечество. Майнцер, Клаус. Серия:Синергетика: от прошлого к будущему
  2. 2009 г.; Изд-во: М.: Книжный дом «Либроком»
  3. Интеллектуальные системы управления организационно-техническими системами. Антамошин, А.Н.; Близнова, О.В.; Большаков, А.А. и др. 2016 г.; Изд-во: М.: Горячая линия — Телеком.
  4. Принятие решений. Интегрированные интеллектуальные системы. Арсеньев, Ю.Н.; Шелобаев, С.И.; Давыдова, Т.Ю. 2003 г.; Изд-во: М.: Юнити-Дана
  5. Искусственный интеллект. Стратегии и методы решения сложных проблем. Люгер, Джордж Ф. 2003 г.; Изд-во: М.: Вильямс.
  6. Масленникова, О.Е.; Попова, И. В. Основы искусственного интеллекта. 2008 г.; Изд-во: Магнитогорск: Магнитогорский государственный университет

Экспертные системы

Вы будете перенаправлены на Автор24

Понятие экспертных систем

Экспертная система (ЭС) – компьютерная система, предназначенная для частичной замены специалиста-эксперта в разрешении проблемной ситуации.

ЭС разрабатывались с 1970-х гг. исследователями искусственного интеллекта. Прообраз ЭС был предложен в 1832 г. С.Н. Корсаковым, который создал механические устройства, называемые интеллектуальными машинами, которые позволяли находить решения по заданным условиям (например, позволяли определить нужные лекарства по симптомам заболевания).

Читайте также  Вход rca аудио что это?

В начале 1980-х гг. в рамках исследований по искусственному интеллекту было сформировано самостоятельное направление, которое и получило название экспертных систем. Основное назначение ЭС состоит в разработке программных средств, которые получают при решении задач результаты, не уступающие по качеству и эффективности решениям человека-эксперта. ЭС используют для решения задач, не поддающихся формализации, например в следующих случаях:

Готовые работы на аналогичную тему

  • задачи невозможно задать в числовой форме;
  • цель нельзя выразить с помощью точно определенной целевой функции;
  • невозможно составить алгоритм решения задачи;
  • если алгоритм составить можно, то его использование невозможно из-за ограниченности ресурсов (времени, памяти).

Таким образом, экспертная система – это программное средство, которое использует знания экспертов для обеспечения высокоэффективного решения неформализованных задач в узкой предметной области.

В основе ЭС лежит база знаний (БЗ) о предметной области, которая способна накапливаться в процессе построения и эксплуатации ЭС. Важнейшим свойством всех экспертных систем является накопление и организация знаний.

Структура экспертных систем

  • Пользователь;
  • Интерфейс пользователя;
  • Редактор базы знаний;
  • Инженер по знаниям;
  • Эксперт;
  • Оперативная память;
  • База знаний – содержит правила анализа информации от пользователя по конкретной проблеме. ЭС анализирует ситуацию и, в зависимости от своей направленности, выводит рекомендации по разрешению проблемы. База знаний экспертной системы включает факты (статические сведения о предметной области) и правила – набор инструкций, с помощью которых из уже существующих фактов можно получать новые факты.
  • Механизм логического вывода;
  • Подсистема объяснений.

Режимы функционирования

Существует 2 режима, в которых может работать экспертная система:

  1. Режим ввода знаний – эксперт совместно с инженером по знаниям с помощью редактора базы знаний вводит данные о предметной области в базу знаний экспертной системы.
  2. Режим консультации – пользователь в диалоговом режиме сообщает экспертной системе сведения о текущей задаче и получает рекомендации ЭС. Например, по введенным сведениям о физическом состоянии больного экспертная система сообщает о диагнозе в виде списка заболеваний, которые являются наиболее вероятными при данных симптомах.

Классификация экспертных систем

Статические ЭС решают задачи в условиях, когда исходные данные и знания не изменяются во времени.

Квазидинамические ЭС объясняют ситуацию, которая изменяется с течением времени (некоторое фиксированное значение интервала времени)

Динамические ЭС решают задачи в условиях, когда исходные данные и знания изменяются во времени.

Этапы разработки экспертной системы

  1. Этап идентификации проблем – этап определения задач, подлежащих решению, выявления целей разработки, определение экспертов и типов пользователей.
  2. Этап извлечения знаний – проведение содержательного анализа проблемной области, выявление используемых понятий и их взаимосвязей, определение методов решения задач.
  3. Этап структурирования знаний – выбор ИС и определение способов представления всех видов знаний, формализация основных понятий, определение способов интерпретации знаний, моделирование работы системы, оценка адекватности целям системы зафиксированных понятий, методов решений, средств представления и манипулирования знаниями.
  4. Этап формализации – наиболее важный и трудоемкий этап разработки ЭС, на котором база знаний наполняется экспертом. Процесс приобретения знаний делится на получение знаний от эксперта, организацию знаний, которая обеспечивает эффективную работу системы, и представление знаний в понятном для ЭС виде.

Наиболее известные экспертные системы

CLIPS – достаточно популярная оболочка для построения экспертных систем.

OpenCyc – мощная динамическая экспертная система.

MYCIN – достаточно известная диагностическая система, предназначенная для диагностики и наблюдения за состоянием больного менингитом и бактериальными инфекциями.

HASP/SIAP – интерпретирующая система, определяющая местоположение и тип судна в Тихом океане по данным, полученным с акустических систем слежения.

Акинатор – интернет-игра, в которой игрок загадывает персонаж, а программа должна его отгадать, задавая вопросы.

IBM Watson – суперкомпьютер фирмы IBM, который может понимать вопросы на естественном языке и отвечать на них.

Экспертные системы

Экспертная система (ЭС, Expert system) — предиктивная система, включающая в себя знания об определенной слабо структурированной и трудно формализуемой узкой предметной области и способная предлагать и объяснять пользователю разумные решения. Экспертная система состоит из базы знаний, механизма логического вывода и подсистемы объяснений. Экспертная система включает в себя большое число структурных составляющих меньшего размера.

Содержание

Развитие ЭС

В начале восьмидесятых годов в исследованиях по искусственному интеллекту сформировалось самостоятельное направление, получившее название «экспертные системы» (ЭС). Целью исследований в этом новом направлении была разработка программ, которые при решении задач, сложных для эксперта-человека, получают результаты, не уступающие по качеству и эффективности решениям, получаемым экспертом. Для обозначения этой дисциплины также часто используют термин «инженерия знаний», введенный Е.Фейгенбаумом как «привнесение принципов и инструментария исследований из области искусственного интеллекта в решение трудных прикладных проблем, требующих знаний экспертов». На протяжении 1960—1985 гг. успехи в деле освоения искусственного интеллекта (ИИ) касались в основном исследовательских разработок, которые демонстрировали пригодность ИИ для практического использования. В 1988—1990 гг. экспертные системы стали активно применяться в коммерческих приложениях. На заре появления используемые для их создания языки программирования, технологии разработки приложений и используемого делали интеграцию ЭС с традиционными программными системами довольно сложной, а порой даже невыполнимой задачей. Однако в настоящее время средства разработки ЭС используются в полном соответствии с современными технологическими тенденциями традиционного программирования, что решает проблемы, возникающие при создании составных приложений.

Место в ИТ-инфрастрктуре

Назначение

Само название «Экспертные системы» подразумевает возможность замены эксперта-человека программным решением. Это позволяет предприятиям сокращать затраты на оплату труда специалистов, а самим специалистам обращаться при решении любых вопросов в рамках своей деятельности непосредственно к программе. Такие возможности сокращают время решения проблемы и позволяют молодым специалистам обучаться прямо на своем рабочем месте. Примером простейшей экспертной системы могут служить виртуальные «помощники» в пакетах ПО операционных систем компьютеров. Такие алгоритмы решения типовых вопросов избавляют разработчиков от излишней, непомерной и неоправданной нагрузки по общению с конечным пользователем.

Экспертные системы и системы искусственного интеллекта имеют основное отличие от систем обработки данных тем, что в них в основном используются символьный способ представления, символьный вывод и эвристический поиск решения. Экспертные системы предназначены для решения только сложных практических задач. По качеству и эффективности решения экспертные системы не должны уступать решениям эксперта-человека. Решения экспертных систем. могут быть объяснены пользователю на качественном уровне, то есть обладают прозрачностью. Прозрачность экспертных систем обеспечивается их способностью рассуждать о результатах своей работы и базах знаний. Важным свойством экспертных систем является и то, что они способны обучаться. ЭС решают задачи:

  • интерпретации
  • предсказаний
  • диагностики
  • планирования
  • конструирования
  • контроля
  • отладки
  • инструктажа
  • управления

Такие задачи возникают в самых разных областях научных, деловых и промышленных областях. Программные средства, основанные на технологии экспертных систем, получили значительное распространение в мире. Важность экспертных систем состоит в следующем:

  • существенно расширяют круг практически значимых задач, решение которых приносит значительный экономический эффект
  • являются важнейшим средством сокращения длительности и, следовательно, высокой стоимости разработки сложных приложений
  • объединение технологии ЭС с технологией традиционного программирования добавляет новые качества к программным продуктам за счет обеспечения динамичной модификации приложений пользователем, а не программистом, большей «прозрачности» приложения, лучшей графики, интерфейса и взаимодействия.

Неформализованные задачи

Особое внимание следует уделить неформализованным задачам, потому что именно для их решения и создавались экспертные системы. Неформализованные задачи обычно обладают следующими свойствами:

  • ошибочность, неоднозначность, неполнота и противоречивость исходных данных
  • ошибочность, неоднозначность, неполнота и противоречивость знаний о проблемной области и решаемой задаче
  • большая размерность пространства решения, то есть перебор при поиске решения может быть очень большим
  • динамически изменяющиеся данные и знания

Неформализованные задачи представляют большой и очень важный класс задач. Задачи такого плана являются наиболее массовым классом задач, решаемых ЭВМ.

Архитектура клиент-сервер

Существуют инструментальные средства искусственного интеллекта, поддерживающие распределенные вычисления по архитектуре клиент-сервер. Это предоставляет следующие преимущества:

  • снижение стоимости оборудования, используемого в приложениях
  • возможность децентрализовать приложения
  • повышение надежности и общей производительности
  • сокращение количества информации, пересылаемой между оборудованием

Преимущества

Существует ряд преимуществ экспертных систем как перед человеком-оператором, так и перед обычными алгоритмическими базами данных:

  • интегрируемость. Существуют инструментальные средства, легко входящие в состав других информационных технологий и средств
  • открытость и переносимость: у них нет предубеждений и они устойчивы к различным помехам;
  • отсутствие поспешных выводов;
  • выдача оптимального решения
  • неограниченные размеры базы знаний.
  • постоянное хранение данных: эксперт может что-то забыть, машина — никогда.

Перспективы развития

По мнению ведущих специалистов в области программирования, в недалекой перспективе ЭС будут играть важную роль в таких сферах, как:

  • все фазы проектирования, разработки, производства, распределения, продажи, поддержки и оказания услуг
  • интеграция приложений из готовых интеллектуально-взаимодействующих модулей в основные крупные программные решения
  • решение неформализованных задач

ЭКСПЕРТНЫЕ СИСТЕМЫ: СТРУКТУРА И КЛАССИФИКАЦИЯ

ПРЕДМЕТНЫЕ ОБЛАСТИ ДЛЯ ЭКСПЕРТНЫХ СИСТЕМ

В нашей стране современное состояние разработок в области экспертных систем можно охарактеризовать как стадию всевозрастающего интереса среди широких слоев экономистов, финансистов, преподавателей, инженеров, медиков, психологов, программистов, лин- гвистов. К сожалению, этот интерес имеет пока достаточно слабое материальное подкрепление — явная нехватка учебников и специальной литературы, отсутствие символьных процессоров и рабочих станций искусственного интеллекта, ограниченное финансирование исследований в этой области, слабый отечественный рынок программных продуктов для разработки экспертных систем.
Поэтому распространяются &#34подделки&#34 под экспертные системы в виде многочисленных диалоговых систем и интерактивных пакетов прикладных программ, которые дискредитируют в глазах пользователей это чрезвычайно перспективное направление. Процесс создания экспертной системы требует участия высококвалифицированных специалистов в области искусственного интеллекта, которых пока выпускает небольшое количество высших учебных заведений страны.
Современные экспертные системы широко используются для тиражирования опыта и знаний ведущих специалистов практически во всех сферах экономики. Традиционно знания существуют в двух видах — коллективный опыт и личный опыт.
Если большая часть знаний в предметной области представлена в виде коллективного опыта (например, высшая математика), эта предметная область не нуждается в экспертных системах (см.рис.)
Если в предметной области большая часть знаний является личным опытом специалистов высокого уровня (экспертов), если эти знания по каким-либо причинам слабо структурированы, такая предметная область скорее всего нуждается в экспертной системе. (Слева предметная область, не пригодная для создания экспертной системы. Справа предметная область, пригодная для создания экспертной системы.)

Читайте также  В какой стране придумали телефон?

ОБОБЩЕННАЯ СТРУКТУРА ЭКСПЕРТНОЙ СИСТЕМЫ. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

&#34Экспертные системы (ЭС) — это сложные программные комплексы, аккумулирующие знания специалистов в конкретных предметных областях и тиражирующие этот эмпирический опыт для консультаций менее квалифицированных пользователей.&#34
Обобщенная структура экспертной системы представлена на рисунке. Следует учесть, что реальные экспертные системы могут иметь более сложную структуру, однако блоки, изображенные на рисунке, непременно присутствуют в любой действительно экспертной системе, поскольку являют собой негласный канон на структуру современной экспертной системы.
Определим основные термины.

КЛАССИФИКАЦИЯ ЭКСПЕРТНЫХ СИСТЕМ

Схема классификации Класс &#34экспертные системы&#34 сегодня объединяет несколько тысяч различных программных комплексов, которые можно классифицировать по различным критериям. Полезными могут оказаться следующие классификации (рис.).

Классификация по решаемой задаче Интерпретация данных. Это одна из традиционных задач для экспертных систем. Под интерпретацией понимается определение смысла данных, результаты которого должны быть согласованными и корректными. Обычно предусматривается многовариантный анализ данных.
Пример:

  • обнаружение и идентификация различных типов океанских судов — SIAP;
  • определение основных свойств личности по результатам психодиагностического тестирования в системах АВТАНТЕСТ и МИКРОЛЮШЕР и др.
    Диагностика. Под диагностикой понимается обнаружение неисправности в некоторой системе. Неисправность — это отклонение от нормы. Такая трактовка позволяет с единых теоретических позиций рассматривать и неисправность оборудования в технических системах, и заболевания живых организмов, и всевозможные природные аномалии. Важной спецификой является необходимость понимания функциональной структуры (&#34анатомии&#34) диагностирующей системы.
    Пример:
  • диагностика и терапия сужения коронарных сосудов — ANGY;
  • диагностика ошибок в аппаратуре и математическом обеспечении ЭВМ — система CRIB и др.
    Мониторинг. Основная задача мониторинга — непрерывная интерпретация данных в реальном масштабе времени и сигнализация о выходе тех или иных параметров за допустимые пределы. Главные проблемы — &#34пропуск&#34 тревожной ситуации и инверсная задача &#34ложного&#34 срабатывания. Сложность этих проблем в размытости симптомов тревожных ситуаций и необходимость учета временного контекста.
    Пример:
  • контроль за работой электростанций СПРИНТ, помощь диспетчерам атомного реактора — REACTOR;
  • контроль аварийных датчиков на химическом заводе — FALCON и др.
    Проектирование. Проектирование состоит в подготовке спецификаций на создание &#34объектов&#34 с заранее определенными свойствами. Под спецификацией понимается весь набор необходимых документов — чертеж, пояснительная записка и т.д. Основные проблемы здесь — получение четкого структурного описания знаний об объекте и проблема &#34следа&#34. Для организации эффективного проектирования и, в еще большей степени, перепроектирования необходимо формировать не только сами проектные решения, но и мотивы их принятия. Таким образом, в задачах проектирования тесно связываются два основных процесса, выполняемых в рамках соответствующей ЭС: процесс вывода решения и процесс объяснения.
    Пример:
  • проектирование конфигураций ЭВМ VAX — 11/780 в системе XCON (или R1), проектирование БИС — CADHELP;
  • синтез электрических цепей — SYN и др.
    Прогнозирование. Прогнозирующие системы логически выводят вероятные следствия из заданных ситуаций. В прогнозирующей системе обычно используется параметрическая динамическая модель, в которой значения параметров &#34подгоняются&#34 под заданную ситуацию. Выводимые из этой модели следствия составляют основу для прогнозов с вероятностными оценками.
    Пример:
  • предсказание погоды — система WILLARD;
  • оценки будущего урожая — PLANT;
  • прогнозы в экономике — ECON и др.
    Планирование. Под планированием понимается нахождение планов действий, отно-сящихся к объектам, способным выполнять некоторые функции. В таких ЭС используются модели поведения реальных объектов с тем, чтобы логически вывести последствия планируемой деятельности.
    Пример:
  • планирование поведения робота — STRIPS;
  • планирование промышленных заказов — ISIS;
  • планирование эксперимента — MOLGEN и др.
    Обучение. Системы обучения диагностируют ошибки при изучении какой-либо дисциплины с помощью ЭВМ и подсказывают правильные решения. Они аккумулируют знания о гипотетическом &#34ученике&#34 и его характерных ошибках, затем в работе способны Диагностировать слабости в знаниях обучаемых и находить соответствующие средства для их ликвидации. Кроме того, они планируют акт общения с учеником в зависимости от успехов ученика с целью передачи знаний.
    Пример:
  • обучение языку программирования Лисп в системе &#34Учитель Лиспа»
  • система PROUST — обучение языку Паскаль и др.
    В общем случае все системы, основанные на знаниях, можно подразделить на системы, решающие задачи анализа, и на системы, решающие задачи синтеза. Основное отличие задач анализа от задач синтеза заключается в следующем: если в задачах анализа множество решений может быть перечислено и включено в систему, то в задачах синтеза множество решений потенциально строится из решений компонентов или подпроблем. Задача анализа — это интерпретация данных, диагностика; к задачам синтеза относятся проектирование, планирование. Комбинированные задачи: обучение, мониторинг, прогнозирование.

    Классификация по связи с реальным временем Статические ЭС разрабатываются в предметных областях, в которых база знаний и интерпретируемые данные не меняются во времени. Они стабильны.
    Пример. Диагностика неисправностей в автомобиле.
    Квазидинамические ЭС интерпретируют ситуацию, которая меняется с некоторым фиксированным интервалом времени.
    Пример. Микробиологические ЭС, в которых снимаются лабораторные измерения с технологического процесса один раз в 4 — 5 ч (производство лизина, например) и анализируется динамика полученных показателей по отношению к предыдущему измерению.
    Динамические ЭС работают в сопряжении с датчиками объектов в режиме реального времени с непрерывной интерпретацией поступаемых данных.
    Пример. Управление гибкими производственными комплексами, мониторинг в реанимационных палатах и т.д. Пример инструментария лля разработки динамических систем — G2.

    Классификация по типу ЭВМ На сегодняшний день существуют:

  • ЭС для уникальных стратегически важных задач на суперЭВМ (Эльбрус, CRAY, CONVEX и др.);
  • ЭС на ЭВМ средней производительности (типа ЕС ЭВМ, mainframe);
  • ЭС на символьных процессорах и рабочих станциях (SUN, APOLLO);
  • ЭС на мини- и супермини-ЭВМ (VAX, micro-VAX и др.);
  • ЭС на персональных компьютерах (IBM PC, MAC II и подобные).

    Классификация по степени интеграции с другими программами Автономные ЭС работают непосредственно в режиме консультаций с пользователем для специфически &#34экспертных&#34 задач, для решения которых не требуется привлекать традиционные методы обработки данных (расчеты, моделирование и т.д.).
    Гибридные ЭС представляют программный комплекс, агрегирующий стандартные пакеты прикладных программ (например, математическую статистику, линейное программирование или системы управления базами данных) и средства манипулирования знаниями. Это может быть интеллектуальная надстройка над ППП или интегрированная среда для решения сложной задачи с элементами экспертных знаний.
    Несмотря на внешнюю привлекательность гибридного подхода, следует отметить, что разработка таких систем являет собой задачу, на порядок более сложную, чем разработка автономной ЭС. Стыковка не просто разных пакетов, а разных методологий (что происходит в гибридных системах) порождает целый комплекс теоретических и практических трудностей.

    ИНСТРУМЕНТАЛЬНЫЕ СРЕДСТВА ПОСТРОЕНИЯ ЭКСПЕРТНЫХ СИСТЕМ

    Традиционные языки программирования В эту группу инструментальных средств входят традиционные языки программирования (С, C++, Basic, SmallTalk, Fortran и т.д.), ориентированные в основном на численные алгоритмы и слабо подходящие для работы с символьными и логическими данными. Поэтому создание систем искусственного интеллекта на основе этих языков требует большой работы программистов. Однако большим достоинством этих языков является высокая эффективность, связанная с их близостью к традиционной машинной архитектуре. Кроме того, использование традиционных языков программирования позволяет включать интеллектуальные подсистемы (например, интегрированные экспертные системы) в крупные программные комплексы общего назначения. Среди традиционных языков наиболее удобными считаются объектно-ориентированные (SmallTalk, C++). Это связано с тем, что парадигма объектно-ориентированного программирования тесно связана с фреймовой моделью представления знаний. Кроме того, традиционные языки программирования используются для создания других классов инструментальных средств искусственного интеллекта.

    Языки искусственного интеллекта Это прежде всего Лисп (LISP) и Пролог (Prolog) — наиболее распространенные языки, предназначенные для решения задач искусственного интеллекта. Есть и менее распространенные языки искусственного интеллекта, например РЕФАЛ, разработанный в России. Универсальность этих языков меньшая, нежели традиционных языков, но ее потерю языки искусственного интеллекта компенсируют богатыми возможностями по работе с символьными и логическими данными, что крайне важно для задач искусственного интеллекта. На основе языков искусственного интеллекта создаются специализированные компьютеры (например, Лисп-машины), предназначенные для решения задач искусственного интеллекта. Недостаток этих языков — неприменимость для создания гибридных экспертных систем.

    Специальный программный инструментарий В эту группу программных средств искусственного интеллекта входят специальные инструментарии общего назначения. Как правило, это библиотеки и надстройки над языком искусственного интеллекта Лисп: KEE (Knowledge Engineering Environment), FRL (Frame Representation Language), KRL (Knowledge Representation Language), ARTS и др., позволяющие пользователям работать с заготовками экспертных систем на более высоком уровне, нежели это возможно в обычных языках искусственного интеллекта.

    &#34Оболочки&#34 Под &#34оболочками&#34 (shells) понимают &#34пустые&#34 версии существующих экспертных систем, т.е. готовые экспертные системы без базы знаний. Примером такой оболочки может служить EMYCIN (Empty MYCIN — пустой MYCIN), которая представляет собой незаполненную экспертную систему MYCIN. Достоинство оболочек в том, что они вообще не требуют работы программистов для создания готовой экспертной системы. Требуется только специалисты) в предметной области для заполнения базы знаний. Однако если некоторая предметная область плохо укладывается в модель, используемую в некоторой оболочке, заполнить базу знаний в этом случае весьма не просто.

    Биороботы » книги и рассказы

    Мультибот: Датчик касания » робот из lego nxt 2.0