Пзс матрица что это такое?

ПЗС-матрицы — общие сведения

Отдельно взятый элемент чувствителен во всем видимом спектральном диапазоне, поэтому над фотодиодами цветных ПЗС-матриц используется светофильтр, который пропускает только один из трёх цветов: красного (Red), зелёного (Green), синего (Blue) или жёлтого (Yellow), пурпурного (Magenta), бирюзового (Cyan). А в свою очередь в чёрно-белой ПЗС-матрице таких фильтров нет.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ ПИКСЕЛЯ

Пиксель состоит из p-подложки, покрытой прозрачным диэлектриком, на который нанесён светопропускающий электрод, формирующий потенциальную яму.

Над пикселем может присутствовать светофильтр (используется в цветных матрицах) и собирающая линза (используется в матрицах, где чувствительные элементы не полностью занимают поверхность).

На светопропускающий электрод, расположенный на поверхности кристалла, подан положительный потенциал. Свет, падающий на пиксель, проникает вглубь полупроводниковой структуры, образуя электрон-дырочную пару. Образовавшиеся электрон и дырка растаскиваются электрическим полем: электрон перемещаются в зону хранения носителей (потенциальную яму), а дырки перетекают в подложку.

Для пикселя присущи следующие характеристики:

  • Ёмкость потенциальной ямы — это количество электронов, которое способна вместить потенциальная яма.
  • Спектральная чувствительность пикселя — зависимость чувствительности (отношение величины фототока к величине светового потока) от длины волны излучения.
  • Квантовая эффективность (измеряется в процентах) — физическая величина, равная отношению числа фотонов, поглощение которых вызвало образование квазичастиц, к общему числу поглощённых фотонов. У современных ПЗС матриц этот показатель достигает 95%. Для сравнения, человеческий глаз имеет квантовую эффективность порядка 1%.
  • Динамический диапазон — отношение напряжения или тока насыщения к среднему квадратичному напряжению или току темнового шума. Измеряется в дБ.

УСТРОЙСТВО ПЗС-МАТРИЦЫ И ПЕРЕНОСА ЗАРЯДА

ПЗС-матрица разделена на строки, а в свою очередь каждая строка разбита на пиксели. Строки разделены между собой стоп слоями (p + ), которые не допускают перетекания зарядов между ними. Для перемещения пакета данных используются параллельный, он же вертикальный (англ. VCCD) и последовательный, он же горизонтальный (англ. HCCD) регистры сдвига.

Простейший цикл работы трехфазного регистра сдвига начинается с того, что на первый затвор подается положительный потенциал, в результате чего образуется яма, заполненная образовавшимися электронами. Затем на второй затвор подадим потенциал, выше, чем на первом, вследствие чего под вторым затвором образуется более глубокая потенциальная яма, в которую перетекут электроны из под первого затвора. Чтобы продолжить передвижение заряда следует уменьшить значение потенциала на втором затворе, и подать больший потенциал на третий. Электроны перетекают под третий затвор. Данный цикл продолжается от места накопления до непосредственно считывающего горизонтального резистора. Все электроды горизонтального и вертикального регистров сдвига образуют фазы (фаза 1, фаза 2 и фаза 3).

Классификация ПЗС-матриц по цветности:

  • Чёрно-белые
  • Цветные

Классификация ПЗС-матриц по архитектуре:

Зелёным цветом обозначены фоточувствительные ячейки, серым — непрозрачные области.

Для ПЗС-матрицы присущи следующие характеристики:

Матрицы с полнокадровым переносом (англ. full-frame).

  • Простота технологического цикла;
  • Возможность занять 100% поверхности светочувствительными элементами.

Матрицы с кадровым переносом. (англ. frame transfer).

  • Возможность занять 100% поверхности светочувствительными элементами;
  • Время считывания ниже, чем у матрицы с полнокадровым переносом;
  • Смазывание меньше, чем в ПЗС-матрице с полнокадровым переносом;
  • Имеет преимущество рабочего цикла по сравнению полнокадровой архитектурой: ПЗС-матрица с кадровым переносом всё время собирает фотоны.

Матрицы с межстрочным переносом или матрицы с буферизацией столбцов (англ. Interline-transfer).

  • Процессы накопления и переноса заряда пространственно разделены;
  • Заряд из элементов накопления передаётся в закрытые от света ПЗС-матрицы регистры переноса;
  • Перенос заряда всего изображения осуществляется за 1 такт;
  • Нет необходимости применять затвор;
  • Отсутствует смазывание.

Матрицы со строчно-кадровым переносом или матрицы с буферизацией столбцов (англ. interline).

  • Процессы накопления и переноса заряда пространственно разделены;
  • Заряд из элементов накопления передаётся в закрытые от света ПЗС-матрицы регистры переноса;
  • Перенос заряда всего изображения осуществляется за 1 такт;
  • Отсутствует смазывание;
  • Интервал между экспонированиями минимален и подходит для записи видео.

НАУЧНОЕ ПРИМЕНЕНИЕ

КОСМИЧЕСКОЕ ПРИМЕНЕНИЕ

ПРОМЫШЛЕННОЕ ПРИМЕНЕНИЕ

ПРИМЕНЕНИЕ ДЛЯ ОХРАНЫ ОБЪЕКТОВ

ПРИМЕНЕНИЕ В ФОТОГРАФИРОВАНИИ

Матрицы для камер видеонаблюдения. На что обращать внимание?

Качество изображения видеокамеры во многом зависит от используемого в ней светочувствительного сенсора (матрицы). Ведь поставь хоть лучший процессор для оцифровки видео – если на матрице получено плохое изображение, хорошим оно уже не станет. Попытаюсь популярно объяснить, на что следует обращать внимание в характеристиках сенсора камеры видеонаблюдения, чтобы потом не было мучительно больно при взгляде на изображение…

Тип матрицы

В интернете вы наверняка найдете информацию о том, что в камерах видеонаблюдения применяются CCD (ПЗС, прибор с зарядовой связью) и CMOS (КМОП, комплементарная структура металл-оксид-полупроводник) светочувствительные матрицы. Забудьте! Давно остался только CMOS, только хардкор.

CCD матрицы, при всех их достоинствах (лучшая светочувствительность и цветопередача, меньший уровень шумов) – уже практически не используются в видеонаблюдении. Потому что сам принцип их действия CCD матриц – последовательное считывание заряда по ячейкам – слишком медленный, чтобы удовлетворить запросы быстрых современных видеокамер высокого разрешения. Ну и самое главное CCD дороже в производстве, а в условиях современной высококонкурентной среды на счету каждая копейка прибыли. Вот почему все ключевые производители сосредоточились на выпуске именно CMOS матриц.

Осталось производителей, между прочим, не так и много. Крупнейшими, по состоянию на начало 2017 года, являются компании: ON Semiconductor Corporation (в свое время поглотившая известную профильную компанию Aptina), Omnivision Technologies Inc., Samsung Electronics и Sony Corporation. Кроме того, матрицы для собственных нужд производит, например, компания Canon, Hikvision.

Конкуренцию старым брендам пытаются создать молодые, полные энтузиазма и денег китайские чипмейкеры «второго эшелона», вроде компании SOI (Silicon Optronics, Inc.) и др. Трудно сказать, выживет ли молодая поросль, когда на рынке CMOS сенсоров наступит насыщение и станет слишком тесно. Но в любом случае в этом сегменте не исключено появление новых игроков и обострение борьбы, ведь наладить производство CMOS сенсоров не слишком и сложная по современным меркам задача.

Крупные мировые бренды типа Hikvision или Dahua обычно предпочитают работать с производителями матриц первого эшелона или собственными. Локальные же ведут себя по разному. Например, Tecsar даже в недорогих камерах использует матрицы с хорошей репутацией от ON Semiconductor, Omnivision и Sony. В в ассортименте других “народных” марок, например Berger, широко представлены сенсоры SOI и т.д.

Как делаются матрицы цифровых камер

Лидерские качества CMOS

CMOS технология предусматривает размещение электронных компонентов (конденсаторов, транзисторов) непосредственно в каждом пикселе светочувствительной матрицы.

Структура пикселя и CMOS матрицы

Это уменьшает полезную площадь светочувствительного элемента и снижает чувствительность, плюс активные элементы повышают уровень собственных шумов матрицы. Зато технология позволяет осуществлять преобразование заряда светочувствительного элемента в электрический сигнал прямо в матрице и гораздо быстрее сформировать цифровой сигнал изображения, что критично для видеокамер. Именно поэтому CMOS лучше подходят для камер видеонаблюдения, где требуется быстрая смена кадров.

Принцип работы CCD и CMOS матриц

Плюс возможность произвольного считывания ячеек CMOS матрицы дает возможность буквально «на лету» изменять качество и битрейт получаемого видео, что невозможно для CCD. А энергопотребление CMOS-решений ниже, что тоже немаловажно для компактных камер наблюдения.

Да будет цвет

Для получения цветного изображения матрица разлагает световой поток на составляющие цвета: красный, зеленый и синий. Для этого используются соответствующие светофильтры. Разные производители варьируют размещение и количество светочувствительных элементов разного цвета, но суть от этого не меняется.

Принцип формирования изображения на светочувствительной матрице:

Р – светочувствительный элемент
Т — электронные компоненты

Как устроен и работает КМОП сенсор камеры можно также посмотреть на этом видео от Canon:

CMOS матрицы всех производителей базируются на вышеописанных общих принципах, отличаясь лишь в деталях реализации на кремнии. Например, в погоне за дешевизной и сверхприбылью, чипмейкеры стараются выпускать матрицы как можно меньшего размера. Расплата за это неизбежна…

Почему большой – это хорошо

Типоразмер (или другими словами формат) матрицы обычно измеряют по диагонали в дюймах и указывают в виде дроби, например 1/4″, 1/3″, 2/3″, 1/2 дюйма и др.

Читайте также  720 p это какое разрешение?

Первое правило выбора лучшей матрицы довольно простое: при одинаковом количестве пикселей (разрешении), чем больше физические размеры сенсора – тем лучше. У большей матрицы крупнее пиксели, а значит, она улавливает больше света. Пиксели большей матрицы расположены менее тесно, а значит меньше влияние взаимных помех и ниже уровень паразитных шумов, что напрямую влияет на качество получаемого изображения. Наконец, более крупная матрица позволяет получить большие углы обзора при использовании объектива с одним и тем же фокусным расстоянием!


Светочувствительная матрица производства ON Semicondactor для камер видеонаблюдения

Светочувствительная матрица, установленная на плате видеокамеры

Увы, большеформатные матрицы в массовых камерах видеонаблюдения сейчас практически не используются в силу дороговизны и самих матриц, и объективов для них, которые должны иметь более крупные линзы и, соответственно, габариты и стоимость. На сегодня в камеры устанавливают в основном матрицы типоразмера 1/2″ – 1/4″ (это самые крошечные). Выбирая камеру, нужно четко понимать, что покупая ультрадешевую модель с 1/4″ матрицей производства SOI и крохотным объективом с пластиковыми линзами сомнительной прозрачности, вы не сможете создать систему видеоконтроля приемлемого качества, на которой можно было бы хорошо различать небольшие детали отснятых событий, особенно при съемке в условиях слабой освещенности.

Выбирая же камеру с матрицей Sony типоразмера 1/2.8″ вы априори получите гораздо лучший результат по качеству видео, камеру с такой матрицей уже вполне можно использовать в профессиональной системе видеонаблюдения. И чувствительность у такой камеры будет заведомо выше, что позволит лучше снимать в условиях слабой освещенности: в плохую погоду, в сумерках, в полутемном помещении и т.п. С увеличением разрешения при том же размере матрицы светочувствительность падает, и это тоже нужно учитывать при выборе. Для камеры, установленной в темной подворотне у черного хода, имеет смысл выбрать матрицу с меньшим разрешением и более высокой чувствительностью, чем камеру ультравысокого разрешения с низкой чувствительностью матрицы на которой из-за шумов ничего нельзя будет толком различить.

Светочувствительность

Светочувствительность матрицы определяет возможность ее работы в условиях слабого окружающего освещения. С точки зрения физики это выглядит совсем банально: чем меньше световой энергии достаточно для получения изображения матрицей, тем выше ее светочувствительность. Но! Будем откровенны, гнаться за высокой чувствительностью уже особо не стоит. Дело в том, что современные камеры видеонаблюдения благополучно переходят в режимы «день/ночь», при снижении освещенности переводя матрицу в режим черно-белого изображения с более высокой чувствительностью. Плюс автоматическое включение инфракрасной подсветки дает камерам возможность отлично снимать даже в полной темноте. Например, в закрытом помещении без окон и с выключенным светом, когда об уровне какой-то внешней освещенности даже речи нет. Светочувствительность остается критичной для камер лишенных ИК подсветки, но использовать такие в современном видеонаблюдении – почти моветон. Хотя корпусные модели без подсветки все еще продаются, конечно.

Сравнение матриц разных производителей

Вообще правило таково: чем выше освещенность, тем лучше снимет матрица и, соответственно, камера. Поэтому не рекомендуется ставить камеры по полутемным закоулкам, даже если у них хорошая чувствительность. Имейте в виду, что в спецификации матриц камер обычно указывается минимальный уровень освещенности, когда можно зафиксировать хоть какое-то изображение. Но никто не обещает, что это изображение будет хотя бы приемлемого качества! Оно будет отвратительным в 100% случаев, на нем с трудом можно будет что-либо разобрать. Для достижения хотя бы удовлетворительного результата рекомендуется снимать как минимум при освещенности хотя бы в 10-20 раз большей, чем минимально допустимая для матрицы.

Производители придумали ряд технических решений, чтобы улучшить чувствительность CMOS матриц и снизить потери света в процессе фиксации изображения. Для этого в основном используется один принцип: вынести светочувствительный элемент как можно ближе к микролинзе матрицы, собирающей свет. Сначала компания Sony предложила свою технологию Exmor, сократившую путь прохождения света в матрице:

Затем прогрессивные производители дружно перешли на использование матриц с обратной засветкой, позволяющей не только сократить путь света сквозь матрицу, но и сделать полезную площадь светочувствительного слоя больше, разместив его над другими электронными элементами в ячейке:

Технология обратной засветке дает камере максимальную чувствительность. Отсюда вывод – «при прочих равных условиях» лучше приобрести камеру использующую матрицу с обратной засветкой, чем без таковой.

Для улучшения изображения в условиях слабого освещения для слабочувствительных дешевых матриц производители камер могут использовать различные ухищрения. Например, режим «медленного затвора», а говоря проще – режим большой выдержки. Однако «размазывание» контуров движущихся объектов уже на этапе фиксации изображения матрицей в таком режиме не позволяет говорить о мало-мальски качественной видеосъемке, поэтому такой подход совершенно неприемлем в охранном видеонаблюдении, где важны детали.

Определенным прорывом в качестве изображения стало появление технологии Starlight, впервые появившейся в камерах Bosch в 2012 году. Эта технология, благодаря комбинации огромной светочувствительности матрицы (порядка 0,0001 — 0,001 люкс) и очень эффективной технологии шумоподавления позволила получать очень качественное цветное изображение с видеокамер в условиях слабой освещенности и даже в ночное время.

Тогда как традиционный способ преодоления слабой освещенности – использование ИК подсветки – дает возможность получить четкое изображение лишь в монохромном режиме (оттенках серого), камеры с технологией Starlight позволяют получить цветную картинку, обладающую гораздо большей информативностью. В частности, при слабой освещенности система видеонаблюдения с технологией Starlight легко сможет различать цвета автомобилей, одежды и др. важные признаки.

Вот демонстрация технологии Starlight в действии:

При выборе камеры видеонаблюдения обязательно обращайте внимание на характеристики матрицы, а не только ее разрешение. Ведь от этого в значительной степени будет зависеть качество изображения, а следовательно и полезность камеры. В первую очередь следует обращать внимание на надежный бренд, типоразмер и разрешение матрицы, светочувствительность принципиальна лишь для камер лишенных ИК-подсветки.

Очень рекомендую брать камеру с матрицей, по которой можно найти вменяемый даташит с подробной информацией, а не покупать кота в мешке. Например, вы легко найдете спецификации на матрицы производства ON Semiconductor, Omnivision или Sony. А вот мало-мальски подробных характеристик матриц SOI не сыскать днем с фонарем. Возникает подозрение, что производителю есть что скрывать…

А общий итог такой: CMOS матрицы безоговорочно победили в устройствах видеонаблюдения и в ближайшем будущем не собираются сдаваться какой-либо конкурирующей технологии.

Статьи

ПЗС или КМОП матрица – “муки выбора”?

Существуют два вида матриц — CCD (ПЗС) и CMOS (КМОП).

Что же это значит и в чем отличие?

CCD и CMOS сенсоры были изобретены в х годах, и они пришли на смену электронно-лучевым видиконам. CCD сенсоры изначально стали доминирующими на рынке, они были нацелены на использование в научных исследованиях (равно как, и в промышленности, и медицине) и позволяли достичь превосходного качества изображения, соответствующего уровню технологий того времени. Полупроводниковые производства просто не могли «раскрыть» все возможности CMOS сенсоров на то время. Вновь интерес к производству CMOS возник в годах, так как была выявлена необходимость массового производства матриц с меньшим энергопотреблением и меньшей ценой.

В CCD сенсоре свет, который попадает на пиксель, изменяет его «электрическое» состояние. «Информация» об этом передаётся только через один выходной канал (реже — два). Далее происходит конвертация в уровень напряжения, проходит процедура буферизации и подача на выходе — как аналоговый электрический сигнал. Данный сигнал потом усиливается и конвертируется в цифровое значение, благодаря преобразователю (АЦП), который находится вне сенсора.

CMOS сенсоры благодаря технологии производства уже включают в себя усилители и АЦП, соответственно процедура получения изображения позволяет достичь гораздо большей скорости чтения.

Все это сказывается на общем методе получения изображения — технология CCD позволяет проводить считывание только с одного канала или максимум двух (и это является «бутылочным горлышком» данной технологии). Тогда как в CMOS сенсоре цифровые усилители используются в каждом отдельном пикселе (на данный момент в CMOS сенсорах могут использоваться 8 и 16 канальное считывание). Казалось бы, отдельное считывание каждого пикселя должно занимать больше времени, но так как процессы считывания в CMOS сенсорах происходят параллельно, это позволяет им достичь большей пропускной способности по сравнению с CCD сенсорами.

Читайте также  Как настроить рацию в машине?

Это можно сравнить с дорогой CCD представляет собой хорошую, но двух полосную автомагистраль, в то время как CMOS сенсоры можно сравнить с восьми или даже 16 полосным шоссе.

У каждой из технологий есть и свои особенности

— CCD сенсоры имеют лучшую светочувствительность и меньше подвержены «цифровому шуму» (дефект изображения, при котором видны пиксели случайного цвета и яркости) так как размер пикселя, как правило, больше, потому что в камерах, использующих CMOS сенсоры, сложная электронная схема уменьшает размер пикселя. Как результат — некоторое количество света попадает не на светочувствительные фотодиоды. Именно поэтому при съемке с малым количеством света рекомендованы камеры, использующие CCD сенсоры.

Но тут, следует отметить, что еще в 2009 году, компания Sony презентовала технологию т.н. «обратной подсветки». Вследствие этого, CMOS сенсоры стали гораздо более эффективны при съемке со слабым освещением и/или малоконтрастных объектов. И на текущий момент данный недостаток CMOS сенсоров был практически нивелирован.

— CCD сенсоры требуют более сложной электронной схемы сопровождения и, как следствие, это выходит в более высокую стоимость готового изделия с их использованием.

— Энергопотребление CCD сенсоров по некоторым расчётам превышает таковое у CMOS сенсоров вплоть до 100 раз! (именно благодаря низкому энергопотреблению и более компактному размеру CMOS сенсоров они стали основными на потребительском рынке. Например, все камеры в современных мобильных телефонах и планшетах используют CMOS сенсоры). А более высокое энергопотребление может привести к проблемам тепловыделения, которое не только негативно влияет на изображение, но так же может еще больше увеличить стоимость готового изделия ( применения специализированного охлаждения).

— В сенсорах CMOS благодаря технологии индивидуального «чтения» каждого пикселя возможна работа т.н. «окна», которое позволяет выделить определённую часть сенсора (изображения) для считывания вместо всей области сенсора сразу. Это позволяет достичь высокой скорости съемки в выделенной области (по сравнению с CCD).

— В разных типах сенсоров используются различные экспозиционные принципы: CCD используют Global shutter, а в CMOS — Rolling Shutter технологий (более подробно, мы рассмотрим эту тему в отдельной статье).

Следовательно, беря во внимание все вышесказанное, если Вам:

Необходима высокая скорость съемки — Вам необходимы камеры с CMOS сенсорами.

Необходима высокая светочувствительность — Вам необходимы камеры с CCD сенсорами (либо CMOS с технологией «обратной подсветки»).

Необходимо малое количество «цифрового шума» — Вам необходимы камеры с CCD сенсорами.

Необходимо чуть более дешёвое решение — Вам необходимы камеры с CMOS сенсорами.

Подводя итог, следует отметить тот факт, что в любом случае выбор камеры должен зависеть именно от сферы применения, а не только исходя из технических характеристик.

Наши специалисты помогут подобрать камеру именно под Ваши нужды!

Датчики изображения

Датчик изображения или ПЗС-матрица — это электронное устройство с переносом заряда, преобразующего энергию света в электрический сигнал. Принцип действия датчиков заключается в перемещении зарядовых пакетов к выходному устройству вследствие направленного движения потенциальных ям. Фоточувствительные элементы устройства, формирующие изображение, имеют матричную организацию по строкам и столбцам. Процесс преобразования происходит благодаря большому количеству фотодиодов, размещенных в плоскости матрицы (пикселей). Фотодиоды воспринимают весь видимый спектр, поэтому в цветных датчиках используется светофильтр, пропускающий определённый цвет. Соответственно, монохромные датчики не имеют подобных фильтров.

Сфера применения ПЗС-матриц

Область применения датчиков изображений очень обширна и охватывает многие сферы человеческой деятельности. Фактически, ПЗС-матрицы необходимы везде, где возникает потребность в получении и обработке изображений:

  • Микроскопические, спектроскопические и кристаллографические научные исследования.
  • Рентгеноскопия.
  • Космические технологии — телескопы, звездные датчики, спутники слежения и т. д.
  • Системы контроля в промышленном производстве — качество сварных швов, контроль износа поверхности, проверка качества упаковки и т. д.
  • Датчики обработки изображения в системах охраны жилых, административных, торговых и промышленных объектов.
  • Фотосъёмка.
  • Системы контроля скорости на автодорогах, датчики распознавания автомобильных номеров и т. д.
  • Медицинское оборудование и т. д.

Основные характеристики и классификация ПЗС-матриц

Основными характеристиками ПЗС-матриц являются:

  • Эффективность передачи заряда. Параметр представляет собой отношение количества электронов в заряде в конце пути по регистру сдвига, к их количеству в начале.
  • Коэффициент заполнения матрицы — это отношение площади заполненной фотодиодами к полной площади светочувствительной поверхности.
  • Темновой ток — малый электрический ток, протекающий по светочувствительным элементам при отсутствии падающих фотонов.
  • Шум считывания — называется шум проявляющийся даже в условиях отсутствия светового сигнала в матрице, и зависит от конструкции самой матрицы или камеры.
  • По цветности датчики распознавания изображения классифицируются на цветные и черно-белые (монохромные).
  • Наиболее же распространенной является классификация по архитектуре:
  1. Датчики с полнокадровым переносом. Имеют простой технологический цикл и могут выделить всю поверхность под фоточувствительные элементы. В тоже время имеют ограничение в скорости считывания изображения и требуют перекрытия источника света при считывании.
  2. Датчики с кадровым переносом. Также могут выделить всю поверхность под фоточувствительные элементы и имеют меньшее время считывания изображения, чем у полнокадровых матриц. Но они дороже в производстве и также требуют перекрытия затвором при считывании.
  3. Датчики с межстрочным переносом (буферизация столбцов). Не требуется затвор, минимальное время переноса заряда, разделены в пространстве процессы накопления и переноса. Но под фоточувствительные элементы может быть выделено не более 50% поверхности и разрешение ниже, чем у предыдущих матриц.
  4. Датчики со строчно-кадровым переносом. По списку достоинств сходны с матрицами межстрочного переноса. Кроме того, имеют минимальный интервал между экспонированием, что делает возможным запись видео. Недостатки — увеличенный путь заряда и, соответственно, меньшая эффективность, а также 50% покрытие поверхности светочувствительными элементами.

Компания «Макро Групп» предлагает большой выбор датчиков изображения различной архитектуры от ведущих мировых производителей. Все изделия сертифицированы и соответствуют высоким требованиям международных и российских стандартов.

Введение

В данной курсовой работе я рассмотрю общие сведения о приборах с зарядовой связью, параметры, историю создания, характеристики современных ПЗС-камер среднего инфракрасного диапазона.

В результате выполнения курсовой работы изучил литературу по созданию, принципу действия, технических характеристиках и применении ПЗС-камер среднего ИК диапазона.

ПЗС. Физический принцип работы ПЗС. ПЗС-матрица

Прибор с зарядовой связью (ПЗС) представляет собой ряд простых МДП-структур (металл — диэлектрик— полупроводник), сформированные на общей полупроводниковой подложке таким образом, что полоски металлических электродов образуют линейную или матричную регулярную систему, в которой расстояния между соседними электродами достаточно малы (рис. 1). Это обстоятельство обусловливает тот факт, что в работе устройства определяющим является взаимовлияние соседних МДП-структур [1—3].

Рисунок 1 — Структура ПЗС

Основные функциональные назначения фото-чувствительных ПЗС — преобразование оптических изображений в последовательность электрических импульсов (формирование видеосигнала), а также хранение и обработка цифровой и аналоговой информации.

ПЗС изготовляют на основе монокристаллического кремния. Для этого на поверхности кремниевой пластины методом термического окисления создаётся тонкая (0,1-0,15 мкм) диэлектрическая плёнка диоксида кремния. Этот процесс осуществляется таким образом, чтобы обеспечить совершенство границы раздела полупроводник — диэлектрик и минимизировать концентрацию рекомбинаций центров на границе. Электроды отдельных МДП-элементов производятся из алюминия, их длина составляет 3-7 мкм, зазор между электродами 0,2-3 мкм. Типичное число МДП-элементов 500-2000 в линейном и в матричном ПЗС; площадь пластины Под крайними электродами каждой строки изготовляют p- n — переходы, предназначенные для ввода — вывода порции зарядов (зарядовых пакетов) электрич. способом (инжекция p- n -переходом). При фотоэлектрич. вводе зарядовых пакетов ПЗС освещают с фронтальной или тыльной стороны. При фронтальном освещении во избежание затеняющего действия электродов алюминий обычно заменяют плёнками сильнолегированного поликристаллического кремния (поликремния), прозрачного в видимой и ближней ИК-областях спектра.

Читайте также  Как ускорить работу старого компьютера?

Принцип работы ПЗС

Общий принцип работы ПЗС заключается в следующем. Если к любому металлическому электроду ПЗС приложить отрицательное напряжение, то под действием возникающего электрического поля электроны, являющиеся основными носителями в подложке, уходят от поверхности вглубь полупроводника. У поверхности же образуется обедненная область, которая на энергетической диаграмме представляет собой потенциальную яму для неосновных носителей — дырок. Попадающие каким-либо образом в эту область дырки притягиваются к границе раздела диэлектрик — полупроводник и локализуются в узком приповерхностном слое.

Если теперь к соседнему электроду приложить отрицательное напряжение большей амплитуды, то образуется более глубокая потенциальная яма и дырки переходят в нее. Прикладывая к различным электродам ПЗС необходимые управляющие напряжения, можно обеспечить как хранение зарядов в тех или иных приповерхностных областях, так и направленное перемещение зарядов вдоль поверхности (от структуры к структуре). Введение зарядового пакета (запись) может осуществляться либо p-n-переходом, расположенным, например, вблизи крайнего ПЗС элемента, либо светогенерацией. Вывод заряда из системы (считывание) проще всего также осуществить с помощью p-n-перехода. Таким образом, ПЗС представляет собой устройство, в котором внешняя информация (электрические или световые сигналы) преобразуется в зарядовые пакеты подвижных носителей, определенным образом размещаемые в приповерхностных областях, а обработка информации осуществляется управляемым перемещением этих пакетов вдоль поверхности. Очевидно, что на основе ПЗС можно строить цифровые и аналоговые системы. Для цифровых систем важен лишь факт наличия или отсутствия заряда дырок в том или ином элементе ПЗС, при аналоговой обработке имеют дело с величинами перемещающихся зарядов.

Естественно, что заряд, введенный в МДП-структуру, не может храниться в ней неограниченно долго. Процесс термогенерации электронно-дырочных пар в объеме полупроводника и на границе раздела диэлектрик — полупроводник ведет к накоплению в потенциальных ямах паразитных зарядов и, следовательно, к искажению зарядовой информации, а с течением времени и к полному ее «стиранию». Это время может достигать сотен миллисекунд и даже десятков секунд, но, тем не менее, оно конечно и определяет существование нижней граничной частоты. Таким образом, работа прибора основана на нестационарном состоянии МДП-структуры, и ПЗС являются элементами динамического типа.

Если на многоэлементный или матричный ПЗС направить световой поток, несущий изображение, то в объеме полупроводника начнется фотогенерация электронно-дырочных пар. Попадая в обедненную область ПЗС, носители разделяются и в потенциальных ямах накапливаются дырки (причем величина накапливаемого заряда пропорциональна локальной освещенности). По истечении некоторого времени (порядка нескольких миллисекунд), достаточного для восприятия изображения, в матрице ПЗС будет храниться картина зарядовых пакетов, соответствующая распределению освещенностей. При включении тактовых импульсов зарядовые пакеты будут перемещаться к выходному устройству считывания, преобразующему их в электрические сигналы. В результате на выходе получится последовательность импульсов с разной амплитудой, огибающая, которых дает видеосигнал.

Принцип действия ПЗС на примере фрагмента строки ФПЗС, управляемой трёхтактовой (трёхфазной) схемой, иллюстрируется на рисунке 2. В течение такта I (восприятие, накопление и хранение видеоинформации) к электродам 1, 4, 7 прикладывается т. н. напряжение хранения Uxp, оттесняющее основные носители — дырки в случае кремния р-типа — в глубь полупроводника и образующее обеднённые слои глубиной 0,5-2 мкм — потенциальные ямы для электронов. Освещение поверхности ФПЗС порождает в объёме кремния избыточные электронно-дырочные пары, при этом электроны стягиваются в потенциальные ямы, локализуются в тонком (0,01 мкм) приповерхностном слое под электродами 1, 4,7, образуя сигнальные зарядовые пакеты.

зарядовый связь камера инфракрасный

Рисунок 2 — схема работы трёхфазного прибора с зарядовой связью — сдвигового регистра

Величина заряда в каждом пакете пропорциональна экспозиции поверхности вблизи данного электрода. В хорошо сформированных МДП-структурах образующиеся заряды вблизи электродов могут относительно долго сохраняться, однако постепенно вследствие генерации носителей заряда примесными центрами, дефектами в объёме или на границе раздела эти заряды будут накапливаться в потенциальных ямах, пока не превысят сигнальные заряды и даже полностью заполнят ямы.

Во время такта II (перенос зарядов) к электродам 2, 5, 8 и так далее прикладывается, напряжение считывания, более высокое, чем напряжение хранения . Поэтому под электродами 2, 5 и 8 возникают более глубокие потенц. ямы, чем под электронами 1, 4 и 7, и вследствие близости электродов 1 и 2, 4 и 5,7 и 8 барьеры между ними исчезают и электроны перетекают в соседние, более глубокие потенциальные ямы.

Во время такта III напряжение на электродах 2, 5, 8 снижается до а с электродов 1, 4, 7 снимается.

Т. о. осуществляется перенос всех зарядовых пакетов вдоль строки ПЗС вправо на один шаг, равный расстоянию между соседними электродами.

Во всё время работы на электродах, непосредственно не подключённых к потенциалам или поддерживается небольшое напряжение смещения (1-3 В), обеспечивающее обеднение носителями заряда всей поверхности полупроводника и ослабление на ней рекомбинации эффектов.

Повторяя процесс коммутации напряжений многократно, выводят через крайний r- h-переход последовательно все зарядовые пакеты, возбуждённые, напр., светом в строке. При этом в выходной цепи возникают импульсы напряжения, пропорциональные величине заряда данного пакета. Картина освещённости трансформируется в поверхностный зарядовый рельеф, который после продвижения вдоль всей строки преобразуется в последовательность электрических импульсов. Чем больше число элементов в строке или матрице (число 1- ИК приемники; 2- буферные элементы; 3 — ПЗС происходит неполная передача зарядового пакета от одного электрода к соседнему и усиливаются обусловленные этим искажением информации. Чтобы избежать искажений накопленного видеосигнала из-за продолжающегося во время переноса освещения, на кристалле ФПЗС создают пространственно разделённые области восприятия — накопления и хранения — считывания, причём в первых обеспечивают максимальную фоточувствительность, а вторые, наоборот, экранируют от света. В линейном ФПЗС (рис. 3, а) заряды, накопленные в строке 1 за один цикл, передаются в регистр 2 (из чётных элементов) и в регистр 3 (из нечётных). В то время, как по этим регистрам информация передаётся через выход 4 в схему объединения сигналов 5, в строке 1 накапливается новый видеокадр. В ФПЗС с кадровым переносом (рисунок 3) информация, воспринятая матрицей накопления 7, быстро «сбрасывается» в матрицу хранения 2, из которой последовательно считывается ПЗС-регистром 3; в это же время матрица 1 накапливает новый кадр.

Рисунок 3 — накопление и считывание информации в линейном (a), матричном (б) фоточувствительном приборе с зарядовой связью и в приборе с зарядовой инжекцией.

Кроме ПЗС простейшей структуры (рисунок 1) получили распространение и другие их разновидности, в частности приборы с поликремниевыми перекрывающимися электродами (рисунок 4), в которых обеспечиваются активное фотовоздействие на всю поверхность полупроводника и малый зазор между электродами, и приборы с асимметрией приповерхностных свойств (напр., слоем диэлектрика переменной толщины — рисунок 4), работающие в двухтактовом режиме. Принципиально отлична структура ПЗС с объёмным каналом (рисунок 4), образованным диффузией примесей. Накопление, хранение, перенос заряда происходят в объёме полупроводника, где меньше, чем на поверхности, рекомбинация центров и выше подвижность носителей. Следствием этого является увеличение на порядок значения и уменьшение по сравнению со всеми разновидностями ПЗС с поверхностным каналом.

Рисунок 4 — Разновидности приборов с зарядовой связью с поверхностным и объёмным каналами.

Для восприятия цветных изображений используют один из двух способов: разделение оптического потока с помощью призмы на красный, зелёный, синий, восприятие каждого из них специальным ФПЗС — кристаллом, смешение импульсов от всех трёх кристаллов в единый видеосигнал; создание на поверхности ФПЗС плёночного штрихового или мозаичного кодирующего светофильтра, образующего растр из разноцветных триад.